
Teaching Cognitive-Inspired Design of

Sequential Circuits
Binyamin Abramov
School of Education
Tel Aviv University

Tel Aviv 69978, Israel
avramov@post.tau.ac.il

Osnat Keren
Engineering School
Bar-Ilan University

Ramat Gan 52900, Israel
kereno@eng.biu.ac.il

Ilya Levin
School of Education
Tel Aviv University

Tel Aviv 69978, Israel
ilia1@post.tau.ac.il

Abstract— The paper deals with a cognitive-inspired design of
digital systems. Specifically we discuses a new approach for
teaching of sequential circuits (SC) design. The approach is based
on using Split Algorithmic State Machines (ASM) for initial
specification of SC. We analyze both the complexity of the Split
ASMs and the quality the corresponding hardware solutions. The
proposed approach was implemented and studied in an
undergraduate Computer Engineering class. The results of our
study demonstrate that the proposed approach improves both the
students’ success in solving design tasks and the debagability and
testability of resulting schemes.

Keywords- sequential circuit, algorithmic state machine, cognitive
template.

I. INTRODUCTION
The present paper belongs to the field of digital design

education. Specifically we deal with teaching sequential
circuits (SC) design. A process of design/synthesis of SCs
comprises a sequence of initial specification transformations
for obtaining an optimized circuit according to design
constraints (speed, area, power dissipation etc.). In the paper
we demonstrate on the deep interrelations between the initial
specification of the SC and its hardware implementation. Our
approach is based on two hypotheses:

1) an initial specification of any SC is strongly affected
by the cognitive style of the designer;

2) a logic circuit inheriting a structure of its initial
specification is more understandable and debugable than a
regular circuit that doesn’t inherit the initial structure.

Various representations of SCs, as well as various hardware
description languages are well studied. Usually, a SC is
implemented in optimized form that is quite far from the initial
specification. This gap between the initial specification and
implementation is well grounded if the main design concern is
the implementation cost. When debugability and
understandability factors become dominant, the gap becomes
questionable. Moreover, the human-machine interaction on the
system level of design becomes more “user-oriented”, while the
implementation level of the design becomes more distinct from
the system level, and thus, complex to be managed. In general,
this gap characterizes the technology progress in the modern

society. However, the common sense and the basic
technological orientation being successful in the every-day life,
is not always applicable for developing digital systems and,
especially, for teaching logic design.

From our teaching experience, we came to conclusion that
standard automation tools are not suitable for teaching logic
design due to their user-orientation and not the implementation
orientation.

The majority of SC initial specifications is developed by
humans and, as a result, inherits some humans’ thinking
templates. Actually, the thinking templates usually have a tree-
like structure and, fortunately, may be formalized. We consider
a specific cognitive style − dichotomic networks − as a class of
representations, that correspond to a particular specification of
SCs. Dichotomic networks comprise so-called dichotomic
fragments [2]. We refer to dichotomic fragments as binary
trees; dichotomic networks are referred to as systems of
interconnected fragments. An important example of a
dichotomic representation of SC is an Algorithmic State
Machine (ASM) chart. Development of the ASM chart requires
thinking in terms of ASM paths, each corresponding to a
specific Boolean cube. The entire ASM chart forms a single
dichotomic fragment. The ASM specification is natural, logical,
and testable, but it requires bearing in mind all possible logical
paths (situations) and referring to them within the system. This
strict requirement renders the ASM specification logical and
testable, however, it puts designers in a position where they
have to define very sophisticated and even artificial/unexpected
states of the system.

When the number of variables grows, the process of
defining an ASM specification becomes difficult and even
unnatural. Whereas Hardware Description Languages (HDLs)
allow a system specification in a natural way (split
representations), the majority of the existing VLSI CAD
synthesis tools are still based on the conventional SC
representation. As a result, the solutions tend to be non-
understandable and non-debugable. The main subject of our
study is a newly introduced Split ASM having all the
advantages of a conventional ASM but free of the above
drawbacks. A SC can be defined both as a single ASM and by
a network of ASMs of low complexity. The trade-off between
these two extreme cases is of a special interest. This trade-off
as well as the size of the ASM fragments and the structure of

their interconnection within the Split ASM is subjects of our
study. It is known that when people are given a problem for
which there exists a correct solution and an initial estimate of
that solution, they tend to provide a final estimate close to the
initial one. This is termed anchoring. Anchoring heuristics
help humans simplify problem solving in complex situations
without conscious effort. In our work, we apply the anchoring
heuristic principle to teaching SC design. We consider the
initial specification of SC as an initial estimate of the design
solution. Since the entire design process is a sequence of
equivalent transformations between various representations of
the same SC, each of the representations may consider a
certain implementation of the system. Thus, the initial
specification is also a kind of implementation. If the initial
specification is considered an anchor, then the design problem
can be solved by using the anchoring and adjustment
heuristics algorithm. In contrast to conventional teaching
methods, we synthesize a SC directly from its initial
specification. Circuits produced by the anchoring synthesis
may have an additional overhead in comparison to circuits
produced by the conventional optimization method.
Nevertheless, we consider this a reasonable price for such an
important property as debug-ability and readability of the SC.
Moreover, we show that a relatively small overhead is
required for the proposed approach.

The present work presents:
• A study of dichotomic networks as cognitive basis for

specification of SCs.
• A study of the efficiency of teaching SCs defined in

Split ASM form.

We show that use of Split ASM notation and dichotomic
cognitive templates allows design of SCs in a very efficient
way. Circuits designed by students according to the proposed
approach are understandable and debugable. The proposed
approach allows increasing a size and complexity of SCs that
can be handled by students.

II. SPLIT ASM
A design process transforms a set of specifications into an

implementation of the specifications. Both the specification
and the implementation are forms of description of the system
functionality, but they have different levels of abstraction.
Given the behavioral description of the system’s (observed or
desired) functionality, from the formal model stage onwards,
we distinguish between two main paradigms: the procedural
(algorithmic) paradigm and the declarative paradigm [1,3].

According to the declarative paradigm, the person (e.g.,
student, user, designer) defines the structure of the system by
focusing on the logical scheme of the SC. In contrast,
according to the procedural paradigm the user focuses on the
behavior of the system.

In our study, we deal with the most popular paradigm - the
procedural paradigm. The main formal construct for the
procedural paradigm is the ASM chart. The ASM chart is a

directed connected graph comprising an initial vertex, a final
vertex, a finite set of operator vertices, and conditional
vertices [4]. Each conditional vertex contains a single logical
condition from a set of input variables (x's) of the SC. Each
operator vertex contains a specific output vector (Y) from the
set of output signals of the SC.

We define the Split ASM by connecting a number of
conventional ASMs (component ASMs) as follows:

1) Parallel connection: connecting roots of two or more
components ASMs.

2) Sequential connection: replacing one terminal node
of an ASM with another ASM.
These component ASMs (sub-graphs in to Split ASM)
correspond to dichotomic fragments. The output vectors of
each of the fragments are logically summed.

 Fig. 1 illustrates the ASM and Split-ASM descriptions of
the same SC that controls two-axis manipulator having two
inputs and two outputs variables, which form 3 types of output
patterns.

 a) b)

Figure 1. Example of a SC representation by ASM (a) and Split ASM (b).

Clearly, an ASM is very suitable form of the initial
specification [2]. Nevertheless, it has a significant cognitive
contradiction. On one hand, the ASM corresponds to a
classical von Neumann’s architecture that is based on the
sequential, step-by-step execution of the algorithm. On the
other hand, on the hardware level, the behavior of the ASM is
concurrent. Furthermore, the ASM description includes a
significant redundancy, associated with its tree-like nature.
One of the main requirements for a modern systems’
specification is its ability to support the concurrency.

The proposed paradigm allows combining advantages of
both considered paradigms: the declarative and the procedural.
Each sub-graph of Split ASM is the usual ASM, allowing the
use of the existing design methodology. At the same time,
communication sub-graphs allow to trace the structure of the
described system. Our assumption of necessity of the initial
specification and the final description conformity, finds the
acknowledgement in the proposed paradigm. In additional, the
Split ASM specification is therefore much more natural. It

corresponds to human cognitive patterns to present a complex
entity as an assembly of simpler components.

Our study combines methods both from cognitive science
and from computer science. Namely, we reveal the mental
representations people have for a given domain and the visual
devices they use to convey it, and at the same time, we create
effective hardware, which inherits the cognitive style of the
designer.

The cognitive theory presented in [6] formulates a number
of principles and understandings about human learning.
Human memory has two channels for processing information:
visual and auditory.

• Human memory has a limited capacity for processing
information.

• Learning occurs by active processing in the memory
system.

The proposed Split ASM fulfils the above principles; it has
a graphical representation, each separated component ASM
includes a smaller number of variables (i.e. reduction of
complexity). Moreover, since the working memory has a
limited capacity [5], the task of designing a SC becomes more
difficult and complicated as the number of input-variables
increase. The Split ASM allows to reduce the number of
variables and hence to use efficiently the short-term memory.

III. EXPERIMENTS
The experiments included eight SC design tasks (Berger

counter design, 1-hot code controller and standards
benchmarks designs [7]). A group of 43 undergraduate
Computer Engineering students were asked to define
appropriate ASMs, both in the conventional and in the split
form. The resulting designs were compared in terms of their
quality and the design time. Additionally, in order to compare
the understandability of the two schemes, the students were
asked to perform reverse engineering and to find out the
functionality that a given ASM represents.

Figure 2. Average success in completion of design tasks.

The comparison between the two representations indicates
that:

1) the Split ASM has a shorter average path length than
the corresponding conventional ASM and a smaller number of
vertices;

2) the Split-ASM is preferable from of the point of the
hardware overhead – the Split ASM provides about 20%
reduction in the number of gates.

Let a success in solving a given task be the completion of
the design in a given time. Fig. 2 shows the relation between
the success and the number of input variables for both ASM
forms.

A review of the designs and interviews of the students
indicate that the majority of students preferred to work with a
Split ASM due to its simplicity and efficiency when the
number of input variables has increased. Fig. 3 demonstrates
this observation.

Figure 3. The distribution of the design paradigms as a function of the number

of input variables.

As can be seen from Fig. 3, the number of input variables -
7, is the threshold, after which the migration from ASM to
Split ASM is inescapable. Our result is well correlated with
the known fact that the depth of short-term memory is 7±2
items input (variables input variables in our case) [9].

Fig. 4 shows the relationship between the number of
components in Split ASM and the number of input variables.

Figure 4. Number of components versus design complexity.

For evaluation of design mental complexity [10] and
comparison between ASM and Split ASM, we introduce a

new complexity criterion so called a rectangle of complexity:
a product of the Split ASM components number and the
average path length. Experiments show that for each initial
specification this new criterion in most cases remains constant
and does not depend on number of components.

To demonstrate the understandability property of the Split-
ASM, we performed an additional experiment in a group of 14
students. The students were asked to find the proper
specification of a given implementation, i.e., to perform a
reverse engineering. The success rate in performing a correct
reverse engineering of a Split-ASM was 70%, while for
conventional ASM the success rate was 50%.

IV. CONCLUSIONS
We presented a new approach for teaching SC design. The

approach is based on the cognitive-inspired Split-ASM
notation. Circuits designed by students according to this
approach were found to be more understandable and debugable
than the conventional designs. Moreover, the proposed
approach allows increasing a size and complexity of SCs that
can be handled by students. The effectiveness of the approach
was examined on a number of design tasks. The new approach
gives a more adequate idea about the digital system’s behavior.
We believe that the Split ASM approach has good future
perspectives in digital design teaching.

REFERENCES
[1] I. Levin, D. Mioduser, A Multiple-Constructs Framework for Teaching

Control Concepts, IEEE Transactions of Education, 39(4), 1996, pp.
488-496.

[2] I. Levin, O. Keren, Split Multi-terminal Binary Decision Diagrams. 8th
International Workshop on Boolean Problems, Freiberg, 2008, pp. 161-
167.

[3] D. Mioduser, I. Levin, Cognitive-conceptual Model for Integration
Robotics and Control into the Curriculum. Computer Science Education,
Special Issue: Robotics in Computer Science & Engineering Education,
7(2), 1996, pp. 199-210.

[4] S. Baranov, Synthesis for Control Automata, Kluwer Academic
Publisher, 1994.

[5] R. Gagne, L. Briggs and W. Wager, Principles of Instructional Design 4th
Ed., 1992.

[6] Alan H. Schoenfeld (1987) COGNITIVE SCIENCE and
MATHEMATICS EDUCATION, LAWRENCE ERLBAUM
ASSOCIATES, PUBLISHERS.

[7] Logic synthesis and optimization benchmarks. – University of California,
Berkley, December 1988. – Report NC 27709.

[8] J. Feldman, Minimization of Boolean complexity in human concept
learning. Nature, 2000, pp. 630–633.

[9] N. Cowan, The magical number 4 in short-term memory: A
reconsideration of mental storage capacity. Behavioral and Brain
Sciences, 24, 2001, pp. 97-185.

[10] J. Feldman, The simplicity principle in human concept learning. Current
Directions in Psychological Science, 12(6), 2003, pp. 227–233.

