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Abstract— The paper deals with a cognitive-inspired design of 
digital systems. Specifically we discuses a new approach for 
teaching of sequential circuits (SC) design. The approach is based 
on using Split Algorithmic State Machines (ASM) for initial 
specification of SC. We analyze both the complexity of the Split 
ASMs and the quality the corresponding hardware solutions. The 
proposed approach was implemented and studied in an 
undergraduate Computer Engineering class. The results of our 
study demonstrate that the proposed approach improves both the 
students’ success in solving design tasks and the debagability and 
testability of resulting schemes. 

Keywords- sequential circuit, algorithmic state machine, cognitive 
template. 

I. INTRODUCTION 
The present paper belongs to the field of digital design 

education. Specifically we deal with teaching sequential 
circuits (SC) design. A process of design/synthesis of SCs 
comprises a sequence of initial specification transformations 
for obtaining an optimized circuit according to design 
constraints (speed, area, power dissipation etc.). In the paper 
we demonstrate on the deep interrelations between the initial 
specification of the SC and its hardware implementation. Our 
approach is based on two hypotheses: 

1) an initial specification of any SC is strongly affected 
by the cognitive style of the designer;  

2) a logic circuit inheriting a structure of its initial 
specification is more understandable and debugable than a 
regular circuit that doesn’t inherit the initial structure. 

Various representations of SCs, as well as various hardware 
description languages are well studied. Usually, a SC is 
implemented in optimized form that is quite far from the initial 
specification. This gap between the initial specification and 
implementation is well grounded if the main design concern is 
the implementation cost. When debugability and 
understandability factors become dominant, the gap becomes 
questionable. Moreover, the human-machine interaction on the 
system level of design becomes more “user-oriented”, while the 
implementation level of the design becomes more distinct from 
the system level, and thus, complex to be managed. In general, 
this gap characterizes the technology progress in the modern  

 

society. However, the common sense and the basic 
technological orientation being successful in the every-day life, 
is not always applicable for developing digital systems and, 
especially, for teaching logic design. 

From our teaching experience, we came to conclusion that 
standard automation tools are not suitable for teaching logic 
design due to their user-orientation and not the implementation 
orientation. 

The majority of SC initial specifications is developed by 
humans and, as a result, inherits some humans’ thinking 
templates. Actually, the thinking templates usually have a tree-
like structure and, fortunately, may be formalized. We consider 
a specific cognitive style − dichotomic networks − as a class of 
representations, that correspond to a particular specification of 
SCs. Dichotomic networks comprise so-called dichotomic 
fragments [2]. We refer to dichotomic fragments as binary 
trees; dichotomic networks are referred to as systems of 
interconnected fragments. An important example of a 
dichotomic representation of SC is an Algorithmic State 
Machine (ASM) chart. Development of the ASM chart requires 
thinking in terms of ASM paths, each corresponding to a 
specific Boolean cube. The entire ASM chart forms a single 
dichotomic fragment. The ASM specification is natural, logical, 
and testable, but it requires bearing in mind all possible logical 
paths (situations) and referring to them within the system. This 
strict requirement renders the ASM specification logical and 
testable, however, it puts designers in a position where they 
have to define very sophisticated and even artificial/unexpected 
states of the system. 

When the number of variables grows, the process of 
defining an ASM specification becomes difficult and even 
unnatural. Whereas Hardware Description Languages (HDLs) 
allow a system specification in a natural way (split 
representations), the majority of the existing VLSI CAD 
synthesis tools are still based on the conventional SC 
representation. As a result, the solutions tend to be non-
understandable and non-debugable. The main subject of our 
study is a newly introduced Split ASM having all the 
advantages of a conventional ASM but free of the above 
drawbacks.  A SC can be defined both as a single ASM and by 
a network of ASMs of low complexity. The trade-off between 
these two extreme cases is of a special interest. This trade-off 
as well as the size of the ASM fragments and the structure of 



their interconnection within the Split ASM is subjects of our 
study. It is known that when people are given a problem for 
which there exists a correct solution and an initial estimate of 
that solution, they tend to provide a final estimate close to the 
initial one. This is termed anchoring. Anchoring heuristics 
help humans simplify problem solving in complex situations 
without conscious effort. In our work, we apply the anchoring 
heuristic principle to teaching SC design. We consider the 
initial specification of SC as an initial estimate of the design 
solution. Since the entire design process is a sequence of 
equivalent transformations between various representations of 
the same SC, each of the representations may consider a 
certain implementation of the system. Thus, the initial 
specification is also a kind of implementation. If the initial 
specification is considered an anchor, then the design problem 
can be solved by using the anchoring and adjustment 
heuristics algorithm. In contrast to conventional teaching 
methods, we synthesize a SC directly from its initial 
specification. Circuits produced by the anchoring synthesis 
may have an additional overhead in comparison to circuits 
produced by the conventional optimization method. 
Nevertheless, we consider this a reasonable price for such an 
important property as debug-ability and readability of the SC. 
Moreover, we show that a relatively small overhead is 
required for the proposed approach. 

The present work presents: 
•      A study of dichotomic networks as cognitive basis for 

specification of SCs. 
•     A study of the efficiency of teaching SCs defined in 

Split ASM form. 
 

We show that use of Split ASM notation and dichotomic 
cognitive templates allows design of SCs in a very efficient 
way. Circuits designed by students according to the proposed 
approach are understandable and debugable. The proposed 
approach allows increasing a size and complexity of SCs that 
can be handled by students. 

II. SPLIT ASM 
A design process transforms a set of specifications into an 

implementation of the specifications. Both the specification 
and the implementation are forms of description of the system 
functionality, but they have different levels of abstraction. 
Given the behavioral description of the system’s (observed or 
desired) functionality, from the formal model stage onwards, 
we distinguish between two main paradigms: the procedural 
(algorithmic) paradigm and the declarative paradigm [1,3]. 

According to the declarative paradigm, the person (e.g., 
student, user, designer) defines the structure of the system by 
focusing on the logical scheme of the SC. In contrast, 
according to the procedural paradigm the user focuses on the 
behavior of the system. 

In our study, we deal with the most popular paradigm - the 
procedural paradigm. The main formal construct for the 
procedural paradigm is the ASM chart. The ASM chart is a 

directed connected graph comprising an initial vertex, a final 
vertex, a finite set of operator vertices, and conditional 
vertices [4]. Each conditional vertex contains a single logical 
condition from a set of input variables (x's) of the SC. Each 
operator vertex contains a specific output vector (Y) from the 
set of output signals of the SC. 

We define the Split ASM by connecting a number of 
conventional ASMs (component ASMs) as follows: 

1) Parallel connection: connecting roots of two or more 
components ASMs. 

2) Sequential connection: replacing one terminal node 
of an ASM with another ASM. 
These component ASMs (sub-graphs in to Split ASM) 
correspond to dichotomic fragments. The output vectors of 
each of the fragments are logically summed. 

 Fig. 1 illustrates the ASM and Split-ASM descriptions of 
the same SC that controls two-axis manipulator having two 
inputs and two outputs variables, which form 3 types of output 
patterns. 
 

 
                    a)                                                                   b) 

Figure 1. Example of a SC representation by ASM (a) and Split ASM (b). 

Clearly, an ASM is very suitable form of the initial 
specification [2]. Nevertheless, it has a significant cognitive 
contradiction. On one hand, the ASM corresponds to a 
classical von Neumann’s architecture that is based on the 
sequential, step-by-step execution of the algorithm. On the 
other hand, on the hardware level, the behavior of the ASM is 
concurrent. Furthermore, the ASM description includes a 
significant redundancy, associated with its tree-like nature. 
One of the main requirements for a modern systems’ 
specification is its ability to support the concurrency. 

The proposed paradigm allows combining advantages of 
both considered paradigms: the declarative and the procedural. 
Each sub-graph of Split ASM is the usual ASM, allowing the 
use of the existing design methodology. At the same time, 
communication sub-graphs allow to trace the structure of the 
described system. Our assumption of necessity of the initial 
specification and the final description conformity, finds the 
acknowledgement in the proposed paradigm. In additional, the 
Split ASM specification is therefore much more natural. It 



corresponds to human cognitive patterns to present a complex 
entity as an assembly of simpler components. 

Our study combines methods both from cognitive science 
and from computer science. Namely, we reveal the mental 
representations people have for a given domain and the visual 
devices they use to convey it, and at the same time, we create 
effective hardware, which inherits the cognitive style of the 
designer. 

The cognitive theory presented in [6] formulates a number 
of principles and understandings about human learning. 
Human memory has two channels for processing information: 
visual and auditory. 

• Human memory has a limited capacity for processing 
information. 

• Learning occurs by active processing in the memory 
system. 

The proposed Split ASM fulfils the above principles; it has 
a graphical representation, each separated component ASM 
includes a smaller number of variables (i.e. reduction of 
complexity). Moreover, since the working memory has a 
limited capacity [5], the task of designing a SC becomes more 
difficult and complicated as the number of input-variables 
increase.  The Split ASM allows to reduce the number of 
variables and hence to use efficiently the short-term memory. 
  

III. EXPERIMENTS 
The experiments included eight SC design tasks (Berger 

counter design, 1-hot code controller and standards 
benchmarks designs [7]). A group of 43 undergraduate 
Computer Engineering students were asked to define 
appropriate ASMs, both in the conventional and in the split 
form. The resulting designs were compared in terms of their 
quality and the design time. Additionally, in order to compare 
the understandability of the two schemes, the students were 
asked to perform reverse engineering and to find out the 
functionality that a given ASM represents. 

 
Figure 2. Average success in completion of design tasks.  

The comparison between the two representations indicates 
that: 

1) the Split ASM has a shorter average path length than 
the corresponding conventional ASM and a smaller number of 
vertices; 

2) the Split-ASM is preferable from of the point of the 
hardware overhead – the Split ASM provides about 20% 
reduction in the number of gates.  

Let a success in solving a given task be the completion of 
the design in a given time. Fig. 2 shows the relation between 
the success and the number of input variables for both ASM 
forms.  

A review of the designs and interviews of the students 
indicate that the majority of students preferred to work with a 
Split ASM due to its simplicity and efficiency when the 
number of input variables has increased. Fig. 3 demonstrates 
this observation.  
 

 
Figure 3. The distribution of the design paradigms as a function of the number 

of input variables. 

As can be seen from Fig. 3, the number of input variables - 
7, is the threshold, after which the migration from ASM to 
Split ASM is inescapable. Our result is well correlated with 
the known fact that the depth of short-term memory is 7±2 
items input (variables input variables in our case) [9]. 

Fig. 4 shows the relationship between the number of 
components in Split ASM and the number of input variables. 

 
Figure 4. Number of components versus design complexity. 

For evaluation of design mental complexity [10] and 
comparison between ASM and Split ASM, we introduce a 



new complexity criterion so called a rectangle of complexity: 
a product of the Split ASM components number and the 
average path length. Experiments show that for each initial 
specification this new criterion in most cases remains constant 
and does not depend on number of components. 

To demonstrate the understandability property of the Split-
ASM, we performed an additional experiment in a group of 14 
students. The students were asked to find the proper 
specification of a given implementation, i.e., to perform a 
reverse engineering. The success rate in performing a correct 
reverse engineering of a Split-ASM was 70%, while for 
conventional ASM the success rate was 50%. 

IV. CONCLUSIONS 
We presented a new approach for teaching SC design. The 

approach is based on the cognitive-inspired Split-ASM 
notation. Circuits designed by students according to this 
approach were found to be more understandable and debugable 
than the conventional designs. Moreover, the proposed 
approach allows increasing a size and complexity of SCs that 
can be handled by students. The effectiveness of the approach 
was examined on a number of design tasks. The new approach 
gives a more adequate idea about the digital system’s behavior. 
We believe that the Split ASM approach has good future 
perspectives in digital design teaching. 
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