
FPGA implementation of a real time
multi-resolution edge detection video filter

Jeremie Hamon1, Vincent Fristot1 and Robin Rolland2

1 PHELMA - Grenoble Institute of Technology - jeremie.hamon@grenoble-inp.fr
1 PHELMA - Grenoble Institute of Technology - vincent.fristot@grenoble-inp.fr

2 CIME-Nanotech, Grenoble - robin.rolland@grenoble-inp.fr

Abstract—This paper presents digital video filters labs for
final year engineering students. The project deals with the
implementation of Canny Deriche optimal edge detectors on a
FPGA plateform. The target of these labs is to illustrate the
design of integrated electronic systems and to introduce the
concept of architecture/algorithm adequacy.

Index Terms—Engineering student labs, embedded filters, edge
detectors, real-time video processing, FPGA, SoC

I. INTRODUCTION

This paper presents an advanced digital design project
using FPGA for final year engineering students. The aim
of this project is to study and to implement a real time
edge detection video filter on a DE2 Altera Cyclone II
Development Board [1]. This kind of project presents several
pedagogic interests. Firstly, it is an opportunity for students
to put into practice signal and image processing theory on
a concrete example. Secondly, as shown in this paper, the
relative complexity of this design project leads students
to explore different architectures to choose the one which
presents the better performance/complexity tradeoff. In the
same line, students have to propose an efficient validation
methodology suited to the project complexity. Finally, this
design project covers the entire FPGA design flow, i.e. from
the HDL specification to the hardware implementation.

This paper is outlined as follows : the second section
presents the required background theory on the edge detection
filters. Then, the hardware implementation upon which the
project is based is described in the third section. The fourth
section presents the design environment, and especially, the
DE2 Altera Cyclone II Development board [1]. The fifth
section presents an illustrative example based on the lab
results, and, finally, the pedagogic interests of such design
project are discussed in the sixth section.

II. THEORETICAL BACKGROUND

The principle of an edge detection filter is to locate the
sharp changes in the image brightness. Two methods are
commonly used: the Laplacian-based ones and the Gradient-
based ones [2]. The second ones, that interest us in this paper,
consist in computing the gradient magnitude and direction
in order to detect local maxima of the magnitude in the

direction of the gradient. These maxima correspond to the
image edges. Usually, a smoothing stage is applied before the
actual edge detection stage to enhance the detection quality
(noise reduction). The figure 1 shows the generic architecture
of such kind of edge detectors.

Y(x,y)
Gx

Gy

|G|

ΘSmoothing Gradient
extraction

Magnitude

Orientation

Maxima 
detection 
along Θ

Yedge(x,y)

Fig. 1. Generic architecture of a Gradient-based edge detector

A. Deriche edge detection filters

Canny [3] defines three criteria of optimal edge filters:
good detection, i.e. a low probability of failing to detect a
real edge point and a low probability of falsely marking
non-edge points, good localization, i.e. detected edges close
as possible to the real edges, and a single response to one
edge. By applying these criteria on a noisy step edge model,
he demonstrates that an optimal edge detection filter can
be implemented by a Gaussian filter to smooth the image
followed by its derivative to extract the gradient components
Gx and Gy. The size of the Gaussian filter is an important
parameter as it defines the resolution/sensitivity tradeoff:
smaller filters allow the detection of thin lines, while larger
filters are more robust to the noise effect.

Deriche improves Canny’s filter in case of digital images.
He proposes to substitute the Gaussian filter with recursive
filtering structure (Infinite Impulse Response filters) to reduce
the computational effort required for smoothing [4], [5]. By
doing so, Deriche’s filter presents a fixed complexity that does
not depend on the smoother coefficient. That allows multi-
resolution edge detection processing.

B. Garcia-Lorca implementation

Finally, Garcia-Lorca proposes an efficient implementation
of the Deriche’s filter suited to FPGA architectures [6], [7].
He demonstrates that the Deriche’s filter can be decomposed
by four second order IIR filters to smooth the image Y (x, y)
(two for the horizontal smoothing and two for the vertical
one), followed with two FIR Roberts filters to extract the



Edge Detector

Smoother

Robert
FIR

Maxima 
detection 
along Θ 

Magnitude

Direction

Y(x,y)

Gx

Gy

|G|

Θ

Ysmooth(x,y)

Yedge(x,y)

A B

CD

E F

Forward
2nd Order 

IIR 

Reverse
2nd Order 

IIR 
Line memory

(180°)

Forward
2nd Order 

IIR 

Reverse
2nd Order 

IIR 
Line memory

(180°)

Image 
memory

(90°)

Fig. 2. Architecture of the Garcia-Lorca edge detector

gradient components (Gx and Gy). While the design project
proposed in this paper relies on this implementation, we
propose to detail it in the next section.

III. EDGE DETECTOR ARCHITECTURE

The figure 2 shows the Garcia-Lorca edge detector archi-
tecture. The smoother stage is composed of four identical IIR
filters, of two line memories, and of one image memory. The
equation (1) represents the z transfer function of the IIR filters
with γ corresponds to the smoother coefficient.

SGL(z) =
(1− γ)2

(1− γz−1)2
(1)

After the first IIR filter, a line memory is used to perform
the horizontal rotation of the image. The principle is to
write the incoming pixels in the memory in one direction
(ex. increasing addresses), and to read them in the opposite
direction (ex. decreasing addresses). By doing so, the image is
rotated of 180◦. However, we note that this principle implies
that two memory accesses are performed at each pixel cycle
(one to read the pixel stored in the memory, and one to write
the new incoming pixel). After this horizontal rotation, the
same IIR filter can be applied to complete the horizontal
smoothing. Then, the image is turned of 90◦ to carry out
the vertical smoothing along exactly the same principle.
Again, this new rotation is performed thanks to a special
management of the image memory: while a pixels column
previously stored is extracted from the memory, the incoming
line is stored at the same memory addresses. Once again,
this principle implies two memory accesses at each pixel cycle.

Possibly, additional line and image memories can be
inserted between the smoother stage and the edge detector
stage in order to rectify the image orientation. These optional
memories are not represented on the figure 2 but have been

implemented in the examples of the section V.

The edge detector stage is divided into three successive
blocks. Firstly, two Robert derivative filters are applied on
the filtered image Ysmooth(x, y) to extract the horizontal and
the vertical components of the gradient (eq. (2,3)). Then, the
gradient magnitude and gradient direction are computed to
enable the magnitude maxima detection in the direction of
the gradient. These maxima correspond to the image edges.
Possibly, a threshold can be added on the comparator block to
mitigate the noise effect and to enhance the detection quality.

Gh =

[
−1 1
−1 1

]
(2)

Gv =

[
1 1

−1 −1

]
(3)

IV. DESIGN ENVIRONNEMENT

A. DE2 development board

We have chosen the Altera DE2 Cyclone II Development
board for the design project because it includes, among others
devices, a large FPGA circuit, a SRAM suited for 512x512
image memorisation, and video In/Out devices (NTSC decoder
and VGA controller) [1]. It includes also a large number of
switches which can be used for debugging, and for setting the
value of the smoother coefficient and the value of the detection
threshold.

B. Video processing environment

Moreover, the DE2 package includes a NTSC video-to-
VGA display project (DE2_TV) in which any video filter can
be mapped. The figure 3 shows the DE2 video processing
architecture. The video decoder block extracts YCrCb 4:2:2
(YUV) video signals from the external NTSC TV decoder.
Because the NTSC video signal is interlaced, it is required to
perform de-interlacing on the data source. That is done thanks
to the SDRAM dual frame buffer and the field selection
multiplexer controlled by the VGA controller. Finally, the
edge detection filter is inserted between YUV 4:2:2 to YUV
4:4:4 converter block and YUV to RGB converter block as
depicted on the figure 3. The edge detection is processed
only on the Y video channel.

NTSC 
decoder

SDRAM 
dual frame 

buffer 

YUV 4:2:2
to 

YUV 4:4:4M
U

X Edge
Detector

YUV 
to 

RGB

VGA
Controller

NTSC
Video
Signal

YUV
4:2:2

sync

Req

odd
lines

even
lines

de-interlaced
video Y

U
V

Y

U
V

R

G
B

VGA_YVGA_Y(0) VGA_X

VGA_HS
VGA_VS

Fig. 3. DE2 video processing architecture



(a) Smoother output at γ = {000} (b) Smoother output at γ = {001} (c) Smoother output at γ = {010} (d) Smoother output at γ = {011}

(e) Gradient magnitude at γ =
{000}

(f) Gradient magnitude at γ =
{001}

(g) Gradient magnitude at γ =
{010}

(h) Gradient magnitude at γ =
{011}

(i) Edge at γ = {000} (j) Edge at γ = {001} (k) Edge at γ = {010} (l) Edge at γ = {011}

Fig. 4. Edge detection examples with respect to the smoothing parameter γ

We note that although the Altera DE2 Cyclone II
Development board integrates a PAL TV decoder, we choose
the NTSC video standard because it simplifies the clock
management in the system. Indeed, NTSC systems use a
refresh rate of 60 fields per second (one image composed of
2 fields), which corresponds exactly to the refresh rate of a
standard VGA display (60Hz). For comparison, PAL system
uses a refresh rate of 50 fields per second. The use of PAL
standard would infer a resampling factor of 6/5 which is,
obviously, more complex to implement.

The video flux processed by the edge detector is clocked
at 27 MHz. Because of the special memory management that
requires two accesses (read and write) during one pixel cycle,
the user filter and the external SRAM memory are clocked at
54 MHz.

C. EDA tools

The whole project is designed in RTL VHDL code and
the functional simulations and validations are performed
with Mentor Graphics ModelSim software. Then, the Altera
Quartus II software is used to do the synthesis, and the place-
and-route steps. Possibly, post place-and-route simulations
are performed in Modelsim before real test on the DE2
development board.

A comprehensive example is provided to students to help
them in the design. It consists in a very simple motion detector
which is implemented at the same location than the edge
detector (figure 3). Its principle is to compare the value of the
incoming pixels with the value of the pixels of the previous
image stored in the image memory so as to detect changes
in the scene. Moreover, a set of VHDL test benches are



provided to simulate the operation of the DE2 video processing
architecture.

V. ILLUSTRATIVE EXAMPLE

The figure 4 shows illustrative examples obtained during
lab sessions on the DE2 development board. The figures 4(a),
4(a), 4(c) and 4(d) show the output of the smoothing filter
for different values of the smoothing parameter γ, the images
of the computed gradient magnitude are displayed on figures
4(e), 4(f), 4(g) and 4(h) as the final edge images are shown
on figure 4(i), 4(j), 4(k) and 4(l). These examples illustrate
the effect of the smoother coefficient as described in section II.

The table I provides a summary of the main hardware
resources used by the edge detector filter and by the whole
DE2 video processing architecture. We note that the memory
lines are synthesised on the FPGA while the memory image
used the external SRAM memory. Then, 256 Kbytes are
used in the SRAM to implement the image memory of the
smoother stage plus 256 Kbytes to implement the optional
image memory required to rectify the image orientation.

TABLE I
RESSOURCES UTILISATION SUMMARY - CYCLONE II EP2C35F672

LUT Flip-Flop RAM Bits Multipliers
de2tv 3537 (5%) 1700 (5%) 58368 (12%) 20 (29%)

edge detector 2057 739 33792 2

VI. EDUCATIVE ISSUES

As mentioned in the introduction, this design project targets
third year engineering students. For two years, it has been
proposed to the students of the Phelma engineering School
with the CIME Nanotech support. This experience lets think
us that the project can be achieved into 7 supervised labs of
4 hours, plus several hours of personal work.

We think this design project presents several pedagogic
interests. Indeed, the complexity of the signal processing
algorithms implemented in this design project leads students
to explore different architectures to choose the one which
presents the better performance/complexity tradeoff. As
an example, the IIR filter used in the smoother stage can
be implemented along different architectures which lead
to different performances or complexities (data precision,
hardware resources, latency...). In the same way, the clock
frequency constraint (54MHz in the edge detector) imposes
to implement pipeline technic. The students have to explore
different combinational partitioning solutions to chose the one
which matches the clock requirements and presents the lowest
latency. We think these different issues perfectly introduce
the concept of the adequacy between an algorithm and its
hardware implementation.

Moreover, the Garcia-Lorca implementation presents some
tricky memory optimisations that seems very interesting for

digital designer. From our experience, the implementation of
these special memory management appears as the biggest
difficulty for the students.

As well, the complexity of the project, as the fact it is
carried out by groups of two or three students, leads them
to propose an efficient design and validation methodology.
Indeed, each student takes in charge the design and the
validation of a sub-part of the project before gather together
the whole project. Then, they have to clearly specify the
behaviour of the different parts as well as the interfaces.

Finally, and more generally, the project covers the entire
design flow of integrated electronic systems, from the
architecture specification to the hardware implementation.

VII. CONCLUSIONS

This paper presents a digital design project that consists
in implementing a real-time edge detection video filter on a
FPGA development board. The section II introduces the edge
detector theory, while the section III describes the Garcia-
Lorca hardware implementation on which the project relies
on. The fourth section presents the design environment and
especially the video processing architecture where the edge
detector is implemented. The section V provides some labs
results, and the pedagogic interests of the project are discussed
in the last section. To conclude, we note that the framework
proposed here can be reused to implement any other kind of
video filter.

REFERENCES

[1] Altera. Altera DE2 Development and Education Board. [On-
line]. Available: http://www.altera.com/education/univ/materials/boards/
unv-de2-board.html

[2] D. Ziou and S. Tabbone, “Edge detection techniques - an overview,”
International Journal of Pattern Recognition and Image Analysis, vol. 8,
pp. 537–559, 1998.

[3] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679–698, Nov. 1986.

[4] R. Deriche, “Using canny’s criteria to derive a recursively implemented
optimal edge detector,” International Journal of Computer Vision, vol. 1,
no. 2, pp. 167–187, 06 1987.

[5] ——, “Fast algorithms for low-level vision,” in 9th International Confer-
ence on Pattern Recognition, vol. 1, Nov 1988, pp. 434–438.

[6] F. Lorca, “Filtres récursifs temps réel pour la détection de contours :
optimisations algorithmiques et architecturales,” Ph.D. dissertation, Orsay,
1996.

[7] F. Lorca, L. Kessal, and D. Demigny, “Efficient ASIC and FPGA imple-
mentations of IIR filters for real time edge detection,” in International
Conference on Image Processing, vol. 2, Oct 1997, pp. 406–409.

http://www.altera.com/education/univ/materials/boards/unv-de2-board.html
http://www.altera.com/education/univ/materials/boards/unv-de2-board.html

	Introduction
	Theoretical background
	Deriche edge detection filters
	Garcia-Lorca implementation

	Edge detector architecture
	Design environnement
	DE2 development board
	Video processing environment
	EDA tools

	Illustrative example
	Educative issues
	Conclusions
	References

