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Abstract—This paper presents an educational approach to 
practice fault analysis at the gate level of digital circuits by means 
of a specially designed fault injection block. The technique allows 
injection of single stuck-at fault at the nodes of the circuit. This 
tool is integrated to DSCH3, and allows the logic simulation of 
basic blocs in the presence of faults, as well as determining the 
fault coverage of a set of test vectors. 
This cooperative work consists in introducing DFT tools and fault 
analysis capabilities, in order to improve the skills of students in 
the field of integrated circuit testing. 
 

Index Terms — Integrated circuit design, Testing, Design for 
Testability, logical stuck-at fault model, DFT CAD educational 
tools.  

I.  INTRODUCTION 

The development of the teaching of microelectronics in 
Tunisia follows the international curricula. At the beginning 
the course was based on the characterization of materials, the 
technological processes like on the design of the devices and 
basic cells for ASICs and design flow. Currently it touches the 
various nano and micro aspects and new electronic devices. It 
relates to the preceding fundamental aspects in addition to the 
modern flow of design for reconfigurable supports or not. In 
this flood of design, the most used tools for description are 
them: VHDL, VHDL-AMS, SystemC. Initially the didactic 
tools were based on tools of CAD in version of demonstration 
of software or on university versions, as published in [1-3]. 

However, new helps with education programs or agreements 
of companies like Mentor, AMS… or association protocols 
with CMP [4] and Europractice [5] open to our university new 
opportunity with tools accessibility. At our days, in the 
University of Monastir and Sousse (ISSAT and ENISO), the 
graduates in master of microelectronics are more than 200. 
Majority of these students continued in doctorate and already 
supported there PhD.  

On the other hand, the increasing complexity of VLSI 
circuits, Systems on-Chip (SOC) or even Networks-on-Chip 
(NOC) has made test generation one of the most complicated 
and time-consuming problems in digital design. The more 
complex are getting electronics systems, the more important 
will be the problems of test and design for testability because 
of the very high cost of testing electronic products. At present, 
most system designers and electronics engineers know little 

about testing, so that companies frequently hire test experts to 
advise their designers on test problems, and they even pay a 
higher salary to the test experts than to their VLSI designers. 
This reflects also today’s university education: IC design is 
widely introduced, but only truly dedicated students learn test. 
The next generation of engineers involved with System-on-
Chip (SoC) technology should be made better aware of the 
importance of test, and trained in test technology to enable 
them to produce high quality and defect-free products. 

This paper introduces the context of microelectronics 
education in Tunisia (section 2), gives the theoretical 
backgrounds of the tool (section 3), and proposes a tool 
overview as well as an illustration on simple case studies 
(section 4), followed by a conclusion. 

II.  MICROELECTRONICS EDUCATION IN TUNISIA 

 
On April 2008, the CNFM (French Center of Training in 

Microelectronics) [6] signed a framework agreement for 
collaboration with the Universities of Sousse and Monastir and 
the Technology pole of Sousse, Tunisia. The agreement was 
signed in Tunis in the Mediterranean Forum Business 
Development-MAD-ALLIA. This framework agreement 
expresses the intention to develop training, research and 
technological innovation in the field of microelectronics in 
Tunisia, as well as increase mobility between the various 
agencies involved in the two countries. 

Specifically, it plans to establish in Tunisia, various 
measures based on the experience of CNFM network in 
France: pooling resources and expertise, provision of software, 
training of trainers, education days, welcoming students and 
trainers in the central technology of open CNFM, etc.. The 
partners are also committed to working together to obtain 
financing including through tender or programs promoting 
international relations. 

This collaboration is one aspect among others who express 
the desire for Tunisia to take forward in the field of 
microelectronics. This dynamics of teaching and the formation 
by research allowed the attraction of foreign industrial activity 
in engineering in Microelectronics like ST Microelectronics 
(300 engineers in 2007), ALCATEL, SAGEM (3200 
people)… or national industry like TELNET... 
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This industrial activity was consolidated by the creation of a 
new technological poles specialized in Microelectronics in 
Sousse (third city in Tunisia) after that of the technological 
pole El Ghazala in Tunis although specialized in 
telecommunication. 

On the other hand, DSCH3 and Microwind3 [7] tools have 
been used from several years in Monastir, Gabes and Sfax 
(since 1998) in their free version, and, more recently, in 
ISSAT of Sousse which, actively use DSCH3 and Microwind3 
(in their complete version) as a “tester user”. Labs based on 
DSCH3 and Microwind3 are introduced and taught in a course 
entitled "Advanced Design" [8][9] in the department of 
electronic engineering as an option. All students chose this 
option, find the content very interesting and their feed-back is 
very positive. 

III.  THEORETICAL BACKGROUND FOR THE TOOL 

Design of logic integrated circuits in CMOS technology is 
becoming more and more complex since VLSI is the interest 
of many electronic IC users and manufacturers. A common 
problem to be solved by designers, manufacturers and users is 
the testing of these ICs. 

A. Testing an IC 

Testing an integrated circuit can be expressed by checking if 
its outputs correspond to the inputs applied to it. If the test is 
positive, then the system is good for use. If the outputs are 
different than expected, the IC is rejected (Go/No Go test). A 
diagnosis may be applied to it, in order to point out and 
identify the problem's causes. 

Testing is applied to detect faults after several operations: 
design, manufacturing, packaging, as illustrated in figure 1. If 
a test strategy is considered at IC level, the fault can be 
detected at early system design stages, located and eliminated 
at a very low cost. When the faulty chip is soldered on a 
printed circuit board, the cost of fault remedy would be 
multiplied by ten. And this cost factors continues to apply until 
the system has been assembled and packaged and sent to final 
users, as illustrated in Figure 2.  
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Figure 1: typical IC production flow 
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Figure 2: Test cost (The rule of ten) 

 
The first idea to test an N input circuit would be to apply an 

N-bit counter to the inputs (controllability), then generate all 
the 2N combinations, and observe the outputs for checking 
(observability). This is called "exhaustive testing" (Fig. 3), and 
it is very efficient, but only for few- input circuits. However, 
this technique becomes very time consuming when the input 
number increases. Given a set of faults in the circuit under test 
(CUT), our goal is to obtain the smallest possible number of 
test patterns which guarantees the highest fault coverage. Test 
compaction refers to the process of reducing the number of test 
patterns in a test set without reducing its fault coverage.  

 
 Exhaustive testing 

N inputs  2N Combinaisons  

100 MHz tester: 
32 inputs     0,7 Minutes 

 
40 inputs     3 Hours 
 
64 inputs       58 Centuries!! 

 
Figure 3: The exhaustive testing time becomes prohibitive with a large 

number of IC inputs. 
 

A test pattern (or test vector) for a fault f in a circuit C is an input 
combination for which the output(s) of C is different when f is 
present than when it is not (Fig. 4). A test vector x detects fault f if: 
 

   C(x) ⊕ Cf(x) = 1 
 
Where: C(x) is the response of the fault free circuit, and Cf(x) is the 
response of the faulty circuit. 
 

 Faulty system 

Test pattern 1)()( =⊕ xCxC f  
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Figure 4: A test pattern detects a fault if the fault free response is different 

from the faulty response. 
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B. Fault Testing 

1) Fault model  

Failure modes are manifested on the logical level as incorrect 
signal values. A fault is a model that represents the effect of a 
failure by means of the change that is produced in the system 
signal. Several defects are usually mapped to one fault model, 
and it is called a many-to-one mapping. However, some 
defects may also be represented by more than one fault model. 
Fault models have the advantage of being a more tractable 
representation than physical failure modes. It is possible to 
mark most commonly used fault models (Table 1). 
 

Fault Model Description 
Single stuck-at faults 
(SSF) 

One line takes the value 0 or 1. 

Multiple stuck-at 
faults (MSF) 

One, two or more lines have fixed values, not 
necessarily the same. 

Bridging faults Two or more lines that are normally independent 
become electrically connected. 

Delay faults A fault is caused by delays in one or more paths in 
the circuit. 

Intermittent faults Caused by internal parameter degradation. 
Incorrect signal values occur for some but not all 
states of the circuit. Degradation is progressive 
until permanent failure occurs. 

Transient faults Incorrect signal values caused by coupled 
disturbances. Coupling may be via power bus 
capacitive or inductive coupling. Includes internal 
and external sources as well as particle irradiation. 

 
Table 1: Most commonly used fault models 

 
As a model, the fault does not have to be an exact 

representation of the defects, but rather, to be useful in 
detecting the defects. For example, the most common fault 
model assumes single stuck-at (SSF) lines even though it is 
clear that this model does not accurately represent all actual 
physical failures. The rational for continuing to use stuck-at 
fault model is the fact that it has been satisfactory in the past. 
In addition, test sets that have been generated for this fault 
type have been effective in detecting other types of faults. 
However, as with any model, a fault cannot represent all 
failures. Further will be discussed a bit closer the fault models 
that have been brought in Table 1. 

2) Stuck-at-faults 

As it was mentioned earlier, a single stuck-at fault (SSF) 
represents a line in the circuit that is fixed to logic value 0 or 
1. We consider here permanent faults that are faults that are 
continuous and stable, whose nature do not change before, 
during, and after testing. These faults are affecting the 
functional behavior of the system permanently. These faults 
are usually localized and can be modeled. Other faults such as 
temporary faults or intermittent faults are not considered in 
this application note.  
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Figure 5: Physical origin of a node fault stuck at 0. 
 
Fig. 5 illustrates a possible origin for a node stuck at 0 

voltage: the implementation is close to a VSS node (here 
situated close, same layer), and a faulty metal bridge makes a 
robust connection to the ground. 

3) Other faults 

The manufacturing of interconnects may result in 
interruptions or short-cuts, which may have catastrophic 
consequences on the behavior of the integrated circuit. Fig. 6 
illustrates the case of “Open” and “Short” faults, not 
considered in DSCH for fault simulation. 
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Figure 6: Physical origin of the “Open” and “Short” fault. 
 

Many other faults are also considered in the literature: 
transistor stuck-on and stuck-open faults interconnect 
transition and delay faults, etc... These faults are not 
considered in this work. Independent of how accurately the 
stuck-at fault represents the physical defect, we next continue 
investigating how to generate patterns that detect these faults. 

4) Testing and fault coverage  

Testing is the process of determining whether a device 
functions correctly or not. The question is: How much testing 
of an IC is enough? The Yield (Y) is defined as the ratio of the 
number of good dies per wafer to the number of dies per 
wafer. Fault coverage (FC) is the measure of the ability of a 
test set T to detect a given set of faults that may occur on the 
DUT (Device Under Test). We shall try to achieve FC=1, that 
is a fault coverage of 100%. 

 
 FC= (#detected faults)/(#possible faults) 
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Defect level (DL) is the fraction of bad parts among the parts 
that pass all tests. 

 DL= 1 –Y(1-FC) 
  

Where FC refers to the real defect coverage (probability that 
T detects any possible fault in F or not) and DL is the DPM 
(defects per million). Typical values claimed are less than 200 
DPM, or 0.02%. 
 

IV. TOOL OVERVIEW AND CASE STUDY 
 
DSCH3 is software [8-9] for logic design, companion of 

Microwind, an educational tool for CMOS IC design [7]. 
Based on primitives, a hierarchical circuit is built and 
simulated. Interactive symbols are used to friendly simulation, 
which includes delay and power consumption evaluation.  

In this work, we introduce the concept of fault, consider the 
Single Stuck-at Fault model (SSF), and show how these faults 
may be injected and simulated. Then, using DSCH, we show 
how to build a reference truth table, and how to simulate these 
faults applied to input and output nodes of the circuit under 
test. We investigate how test patterns detect these faults. The 
ultimate goal is to classify the efficiency of test patterns, in 
order to select the most efficient test vectors, and therefore 
reduce the number of test patterns. 

A. Fault simulation concepts 

1) Introduction to fault simulation 

Fault simulation is performed during the design cycle to 
achieve the following goals:  

• Testing specific faulty conditions 
• Guiding the test pattern generator program 
• Measuring the effectiveness of the test patterns 

 
To perform its task, the fault simulation program requires, in 

addition to the circuit model, the stimuli, and the responses of 
a good circuit to the stimuli, a fault model and a fault list. As 
was mentioned earlier, there are different fault models, and the 
most widely used is the stuck-at model. Test patterns generated 
for this model have proven to be useful for other types of 
models, such as multiply stuck-at, bridging, and delay faults. 
The responses deduced by the fault simulator are used to 
determine the fault coverage. 

In the fault simulation process, a fault is considered from the 
list and a pattern is applied to the circuit. If the fault is 
detected, it is dropped from the fault list and the next fault is 
considered. Otherwise, another pattern is applied, and if the 
fault is not detected when all patterns are applied, the fault is 
then considered undetectable by the test and is removed from 
the fault list. The process is continued until the fault list is 
empty. 

Another way to perform fault simulation is to consider first, 
the fault free circuit, simulate it and extract a reference truth 
table. After that, simulate faulty circuit by injecting faults one 
by one, and for each fault extract a faulty truth table that 
should be compared with the reference table in order to find 

out test vectors for the considered fault. This is done until the 
fault set is empty. 

2) Fault simulation result 

The output of a fault simulator separates faults into several 
fault categories. If we can detect a fault at a location, it is a 
testable fault. A testable fault must be placed on a controllable 
net, so that we can change the logic level at that location from 
0 to 1 and from 1 to 0. A testable fault must also be on an 
observable net, so that we can see the effect of the fault at a 
primary output (PO). This means that uncontrollable nets and 
unobservable nets result in faults we cannot detect. We call 
these faults untested faults, untestable faults, or impossible 
faults. In this section we investigate the testing of two circuits, 
a Nand-Or combination and a full-adder. 

B. Case study1: Fault injection in Nand-Or Circuit 

1) Manual fault injection 

The Nand-Or circuit is a simple combination of a 2-input 
NAND gate and a OR gate. The concept of manual fault 
injection is presented in fig. 7. The fault injection at a node N 
consists in opening the connection and inserting a multiplexor 
circuit. An example of s@0 and s@1 injection circuit is 
proposed, based on two multiplexors, one for the function 
mode (normal function/fault injection mode), the second for 
the injected fault type (s@0/s@1). A manual implementation 
in DSCH is reported in Fig. 8 and the corresponding 
simulation in Fig. 9, with both normal and fault injection. 
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Figure 7: Fault injection principles 

 

 
Figure 8: Manual fault injection in a NAND-OR circuit 
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Figure 9: Simulation (test/NandOr_fault.SCH) 

2) Automatic fault injection 

The NandOr circuit has five nodes, therefore 10 possible 
stuck-at faults, if we also consider the internal node linking the 
NAND2 output to the OR input. The automatic Fault Analysis 
Tool is executed by following the next steps. First, the student 
launches the logic simulation which feeds the table with the 
values obtained in the chronograms of the circuit logic 
simulation. Second, the student specifies the type of fault and 
injection nodes: the student selects the type of fault “s@0 & 
s@1”, and applies it to “All nodes” (Fig. 10).  

 

 
Figure 10: Computing the response to fault injection  

 
The student generates the fault list and pilots the simulation 

which evaluates the consequence of all faults one by one. The 
logic values are transferred to the corresponding line. The 
student repeats the last two steps until the table is completed 
(Fig. 10). By a click on “Highlight Detection Vectors”, the 
result is shown in Fig. 11. 

From Fig. 11, it can be seen that the vector 110 detects A@0, 
B@0, C@1 and NandOr@1 (4/8 faults). The vector 100 
detects B@1 and NandOr@0 (2/8 faults). The vector 010 
detects the fault A@1. The vector 111detects the remaining 
fault C@0. Therefore 4 test vectors (010, 100, 110, 111) 
detect all stuck-at faults (test time will be the half of an 
exhaustive test). 

 
 

 
 

Figure 11: Vector detection efficiency evaluation, showing a 100% fault 
coverage 

V. CONCLUSION 

This paper has described an educational feature added to 
DSCH linked with fault injection and simulation at logic level. 
The mechanisms for logic fault injection, simulation and 
optimum test vector extraction have been described and 
illustrated on case-studies. The tool will be introduced in Sept. 
2010 in Tunisia and France for conducting practical trainings 
related to IC test and illustrated theoretical courses about logic 
gate and logic circuit testing. Future developments will 
concern a module for fault injection at the layout level using 
Microwind3. The idea is to model the failure with a spot 
interfering with lithography at a given process step, and then 
move it on the layout, simulate with SPICE and observe its 
effect on the electrical behavior of the circuit in comparison 
with the defect free circuit. 
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