
 1

Abstract—This paper presents an educational approach to
practice fault analysis at the gate level of digital circuits by means
of a specially designed fault injection block. The technique allows
injection of single stuck-at fault at the nodes of the circuit. This
tool is integrated to DSCH3, and allows the logic simulation of
basic blocs in the presence of faults, as well as determining the
fault coverage of a set of test vectors.
This cooperative work consists in introducing DFT tools and fault
analysis capabilities, in order to improve the skills of students in
the field of integrated circuit testing.

Index Terms — Integrated circuit design, Testing, Design for
Testability, logical stuck-at fault model, DFT CAD educational
tools.

I. INTRODUCTION

The development of the teaching of microelectronics in
Tunisia follows the international curricula. At the beginning
the course was based on the characterization of materials, the
technological processes like on the design of the devices and
basic cells for ASICs and design flow. Currently it touches the
various nano and micro aspects and new electronic devices. It
relates to the preceding fundamental aspects in addition to the
modern flow of design for reconfigurable supports or not. In
this flood of design, the most used tools for description are
them: VHDL, VHDL-AMS, SystemC. Initially the didactic
tools were based on tools of CAD in version of demonstration
of software or on university versions, as published in [1-3].

However, new helps with education programs or agreements
of companies like Mentor, AMS… or association protocols
with CMP [4] and Europractice [5] open to our university new
opportunity with tools accessibility. At our days, in the
University of Monastir and Sousse (ISSAT and ENISO), the
graduates in master of microelectronics are more than 200.
Majority of these students continued in doctorate and already
supported there PhD.

On the other hand, the increasing complexity of VLSI
circuits, Systems on-Chip (SOC) or even Networks-on-Chip
(NOC) has made test generation one of the most complicated
and time-consuming problems in digital design. The more
complex are getting electronics systems, the more important
will be the problems of test and design for testability because
of the very high cost of testing electronic products. At present,
most system designers and electronics engineers know little

about testing, so that companies frequently hire test experts to
advise their designers on test problems, and they even pay a
higher salary to the test experts than to their VLSI designers.
This reflects also today’s university education: IC design is
widely introduced, but only truly dedicated students learn test.
The next generation of engineers involved with System-on-
Chip (SoC) technology should be made better aware of the
importance of test, and trained in test technology to enable
them to produce high quality and defect-free products.

This paper introduces the context of microelectronics
education in Tunisia (section 2), gives the theoretical
backgrounds of the tool (section 3), and proposes a tool
overview as well as an illustration on simple case studies
(section 4), followed by a conclusion.

II. MICROELECTRONICS EDUCATION IN TUNISIA

On April 2008, the CNFM (French Center of Training in

Microelectronics) [6] signed a framework agreement for
collaboration with the Universities of Sousse and Monastir and
the Technology pole of Sousse, Tunisia. The agreement was
signed in Tunis in the Mediterranean Forum Business
Development-MAD-ALLIA. This framework agreement
expresses the intention to develop training, research and
technological innovation in the field of microelectronics in
Tunisia, as well as increase mobility between the various
agencies involved in the two countries.

Specifically, it plans to establish in Tunisia, various
measures based on the experience of CNFM network in
France: pooling resources and expertise, provision of software,
training of trainers, education days, welcoming students and
trainers in the central technology of open CNFM, etc.. The
partners are also committed to working together to obtain
financing including through tender or programs promoting
international relations.

This collaboration is one aspect among others who express
the desire for Tunisia to take forward in the field of
microelectronics. This dynamics of teaching and the formation
by research allowed the attraction of foreign industrial activity
in engineering in Microelectronics like ST Microelectronics
(300 engineers in 2007), ALCATEL, SAGEM (3200
people)… or national industry like TELNET...

Introduction to Fault analysis at Logic Level – An
Educational Approach based on DSCH

Belgacem Hamdi (1), Etienne Sicard (2)

(1) ISSAT, Monastir – Tunisia, Belgacem.Hamdi@issatgb.rnu.tn

(2) (2) INSA-Dgei, University of Toulouse – France, etienne.sicard@insa-toulouse.fr

 2

This industrial activity was consolidated by the creation of a
new technological poles specialized in Microelectronics in
Sousse (third city in Tunisia) after that of the technological
pole El Ghazala in Tunis although specialized in
telecommunication.

On the other hand, DSCH3 and Microwind3 [7] tools have
been used from several years in Monastir, Gabes and Sfax
(since 1998) in their free version, and, more recently, in
ISSAT of Sousse which, actively use DSCH3 and Microwind3
(in their complete version) as a “tester user”. Labs based on
DSCH3 and Microwind3 are introduced and taught in a course
entitled "Advanced Design" [8][9] in the department of
electronic engineering as an option. All students chose this
option, find the content very interesting and their feed-back is
very positive.

III. THEORETICAL BACKGROUND FOR THE TOOL

Design of logic integrated circuits in CMOS technology is
becoming more and more complex since VLSI is the interest
of many electronic IC users and manufacturers. A common
problem to be solved by designers, manufacturers and users is
the testing of these ICs.

A. Testing an IC

Testing an integrated circuit can be expressed by checking if
its outputs correspond to the inputs applied to it. If the test is
positive, then the system is good for use. If the outputs are
different than expected, the IC is rejected (Go/No Go test). A
diagnosis may be applied to it, in order to point out and
identify the problem's causes.

Testing is applied to detect faults after several operations:
design, manufacturing, packaging, as illustrated in figure 1. If
a test strategy is considered at IC level, the fault can be
detected at early system design stages, located and eliminated
at a very low cost. When the faulty chip is soldered on a
printed circuit board, the cost of fault remedy would be
multiplied by ten. And this cost factors continues to apply until
the system has been assembled and packaged and sent to final
users, as illustrated in Figure 2.

Probe Test Packaging

Marking Final Test
Visual

inspection

Sample
Test

Shipping

IC fabrication

Figure 1: typical IC production flow

Chip level

Sub-system
level

Board level

10

1

100

Test cost

System level

Figure 2: Test cost (The rule of ten)

The first idea to test an N input circuit would be to apply an

N-bit counter to the inputs (controllability), then generate all
the 2N combinations, and observe the outputs for checking
(observability). This is called "exhaustive testing" (Fig. 3), and
it is very efficient, but only for few- input circuits. However,
this technique becomes very time consuming when the input
number increases. Given a set of faults in the circuit under test
(CUT), our goal is to obtain the smallest possible number of
test patterns which guarantees the highest fault coverage. Test
compaction refers to the process of reducing the number of test
patterns in a test set without reducing its fault coverage.

 Exhaustive testing

N inputs 2N Combinaisons

100 MHz tester:
32 inputs 0,7 Minutes

40 inputs 3 Hours

64 inputs 58 Centuries!!

Figure 3: The exhaustive testing time becomes prohibitive with a large

number of IC inputs.

A test pattern (or test vector) for a fault f in a circuit C is an input
combination for which the output(s) of C is different when f is
present than when it is not (Fig. 4). A test vector x detects fault f if:

 C(x) ⊕ Cf(x) = 1

Where: C(x) is the response of the fault free circuit, and Cf(x) is the
response of the faulty circuit.

 Faulty system

Test pattern 1)()(=⊕ xCxC f

Fault free system

Fault

Figure 4: A test pattern detects a fault if the fault free response is different

from the faulty response.

 3

B. Fault Testing

1) Fault model

Failure modes are manifested on the logical level as incorrect
signal values. A fault is a model that represents the effect of a
failure by means of the change that is produced in the system
signal. Several defects are usually mapped to one fault model,
and it is called a many-to-one mapping. However, some
defects may also be represented by more than one fault model.
Fault models have the advantage of being a more tractable
representation than physical failure modes. It is possible to
mark most commonly used fault models (Table 1).

Fault Model Description
Single stuck-at faults
(SSF)

One line takes the value 0 or 1.

Multiple stuck-at
faults (MSF)

One, two or more lines have fixed values, not
necessarily the same.

Bridging faults Two or more lines that are normally independent
become electrically connected.

Delay faults A fault is caused by delays in one or more paths in
the circuit.

Intermittent faults Caused by internal parameter degradation.
Incorrect signal values occur for some but not all
states of the circuit. Degradation is progressive
until permanent failure occurs.

Transient faults Incorrect signal values caused by coupled
disturbances. Coupling may be via power bus
capacitive or inductive coupling. Includes internal
and external sources as well as particle irradiation.

Table 1: Most commonly used fault models

As a model, the fault does not have to be an exact

representation of the defects, but rather, to be useful in
detecting the defects. For example, the most common fault
model assumes single stuck-at (SSF) lines even though it is
clear that this model does not accurately represent all actual
physical failures. The rational for continuing to use stuck-at
fault model is the fact that it has been satisfactory in the past.
In addition, test sets that have been generated for this fault
type have been effective in detecting other types of faults.
However, as with any model, a fault cannot represent all
failures. Further will be discussed a bit closer the fault models
that have been brought in Table 1.

2) Stuck-at-faults

As it was mentioned earlier, a single stuck-at fault (SSF)
represents a line in the circuit that is fixed to logic value 0 or
1. We consider here permanent faults that are faults that are
continuous and stable, whose nature do not change before,
during, and after testing. These faults are affecting the
functional behavior of the system permanently. These faults
are usually localized and can be modeled. Other faults such as
temporary faults or intermittent faults are not considered in
this application note.

Designed
interconnects

Fabricated
interconnects with
stuck-at-0 fault

Bridge

Node
under test

VSS

Figure 5: Physical origin of a node fault stuck at 0.

Fig. 5 illustrates a possible origin for a node stuck at 0

voltage: the implementation is close to a VSS node (here
situated close, same layer), and a faulty metal bridge makes a
robust connection to the ground.

3) Other faults

The manufacturing of interconnects may result in
interruptions or short-cuts, which may have catastrophic
consequences on the behavior of the integrated circuit. Fig. 6
illustrates the case of “Open” and “Short” faults, not
considered in DSCH for fault simulation.

Designed
interconnects

Open fault

No
connection Short-cut

Short fault

Figure 6: Physical origin of the “Open” and “Short” fault.

Many other faults are also considered in the literature:
transistor stuck-on and stuck-open faults interconnect
transition and delay faults, etc... These faults are not
considered in this work. Independent of how accurately the
stuck-at fault represents the physical defect, we next continue
investigating how to generate patterns that detect these faults.

4) Testing and fault coverage

Testing is the process of determining whether a device
functions correctly or not. The question is: How much testing
of an IC is enough? The Yield (Y) is defined as the ratio of the
number of good dies per wafer to the number of dies per
wafer. Fault coverage (FC) is the measure of the ability of a
test set T to detect a given set of faults that may occur on the
DUT (Device Under Test). We shall try to achieve FC=1, that
is a fault coverage of 100%.

 FC= (#detected faults)/(#possible faults)

 4

Defect level (DL) is the fraction of bad parts among the parts
that pass all tests.

 DL= 1 –Y(1-FC)

Where FC refers to the real defect coverage (probability that
T detects any possible fault in F or not) and DL is the DPM
(defects per million). Typical values claimed are less than 200
DPM, or 0.02%.

IV. TOOL OVERVIEW AND CASE STUDY

DSCH3 is software [8-9] for logic design, companion of

Microwind, an educational tool for CMOS IC design [7].
Based on primitives, a hierarchical circuit is built and
simulated. Interactive symbols are used to friendly simulation,
which includes delay and power consumption evaluation.

In this work, we introduce the concept of fault, consider the
Single Stuck-at Fault model (SSF), and show how these faults
may be injected and simulated. Then, using DSCH, we show
how to build a reference truth table, and how to simulate these
faults applied to input and output nodes of the circuit under
test. We investigate how test patterns detect these faults. The
ultimate goal is to classify the efficiency of test patterns, in
order to select the most efficient test vectors, and therefore
reduce the number of test patterns.

A. Fault simulation concepts

1) Introduction to fault simulation

Fault simulation is performed during the design cycle to
achieve the following goals:

• Testing specific faulty conditions
• Guiding the test pattern generator program
• Measuring the effectiveness of the test patterns

To perform its task, the fault simulation program requires, in

addition to the circuit model, the stimuli, and the responses of
a good circuit to the stimuli, a fault model and a fault list. As
was mentioned earlier, there are different fault models, and the
most widely used is the stuck-at model. Test patterns generated
for this model have proven to be useful for other types of
models, such as multiply stuck-at, bridging, and delay faults.
The responses deduced by the fault simulator are used to
determine the fault coverage.

In the fault simulation process, a fault is considered from the
list and a pattern is applied to the circuit. If the fault is
detected, it is dropped from the fault list and the next fault is
considered. Otherwise, another pattern is applied, and if the
fault is not detected when all patterns are applied, the fault is
then considered undetectable by the test and is removed from
the fault list. The process is continued until the fault list is
empty.

Another way to perform fault simulation is to consider first,
the fault free circuit, simulate it and extract a reference truth
table. After that, simulate faulty circuit by injecting faults one
by one, and for each fault extract a faulty truth table that
should be compared with the reference table in order to find

out test vectors for the considered fault. This is done until the
fault set is empty.

2) Fault simulation result

The output of a fault simulator separates faults into several
fault categories. If we can detect a fault at a location, it is a
testable fault. A testable fault must be placed on a controllable
net, so that we can change the logic level at that location from
0 to 1 and from 1 to 0. A testable fault must also be on an
observable net, so that we can see the effect of the fault at a
primary output (PO). This means that uncontrollable nets and
unobservable nets result in faults we cannot detect. We call
these faults untested faults, untestable faults, or impossible
faults. In this section we investigate the testing of two circuits,
a Nand-Or combination and a full-adder.

B. Case study1: Fault injection in Nand-Or Circuit

1) Manual fault injection

The Nand-Or circuit is a simple combination of a 2-input
NAND gate and a OR gate. The concept of manual fault
injection is presented in fig. 7. The fault injection at a node N
consists in opening the connection and inserting a multiplexor
circuit. An example of s@0 and s@1 injection circuit is
proposed, based on two multiplexors, one for the function
mode (normal function/fault injection mode), the second for
the injected fault type (s@0/s@1). A manual implementation
in DSCH is reported in Fig. 8 and the corresponding
simulation in Fig. 9, with both normal and fault injection.

X

C

B

A

out
Fault

injection

Vss

X
(normal data)

Y

Vdd

s@0/s@1

Fault injection
Mode

Y

Figure 7: Fault injection principles

Figure 8: Manual fault injection in a NAND-OR circuit

 5

s@0 fault
injection

s@0 fault
injection

Fault Injection=0: Normal Function Mode

Fault Injection=1: Test Mode

A

B

C

Fault
injection

Fault type

Out

Figure 9: Simulation (test/NandOr_fault.SCH)

2) Automatic fault injection

The NandOr circuit has five nodes, therefore 10 possible
stuck-at faults, if we also consider the internal node linking the
NAND2 output to the OR input. The automatic Fault Analysis
Tool is executed by following the next steps. First, the student
launches the logic simulation which feeds the table with the
values obtained in the chronograms of the circuit logic
simulation. Second, the student specifies the type of fault and
injection nodes: the student selects the type of fault “s@0 &
s@1”, and applies it to “All nodes” (Fig. 10).

Figure 10: Computing the response to fault injection

The student generates the fault list and pilots the simulation

which evaluates the consequence of all faults one by one. The
logic values are transferred to the corresponding line. The
student repeats the last two steps until the table is completed
(Fig. 10). By a click on “Highlight Detection Vectors”, the
result is shown in Fig. 11.

From Fig. 11, it can be seen that the vector 110 detects A@0,
B@0, C@1 and NandOr@1 (4/8 faults). The vector 100
detects B@1 and NandOr@0 (2/8 faults). The vector 010
detects the fault A@1. The vector 111detects the remaining
fault C@0. Therefore 4 test vectors (010, 100, 110, 111)
detect all stuck-at faults (test time will be the half of an
exhaustive test).

Figure 11: Vector detection efficiency evaluation, showing a 100% fault
coverage

V. CONCLUSION

This paper has described an educational feature added to
DSCH linked with fault injection and simulation at logic level.
The mechanisms for logic fault injection, simulation and
optimum test vector extraction have been described and
illustrated on case-studies. The tool will be introduced in Sept.
2010 in Tunisia and France for conducting practical trainings
related to IC test and illustrated theoretical courses about logic
gate and logic circuit testing. Future developments will
concern a module for fault injection at the layout level using
Microwind3. The idea is to model the failure with a spot
interfering with lithography at a given process step, and then
move it on the layout, simulate with SPICE and observe its
effect on the electrical behavior of the circuit in comparison
with the defect free circuit.

VI. REFERENCES

[1] C. Hacker and R. Sitte, “Interactive Teaching of Elementary Digital

Logic With WinLogiLab”, IEEE Trans. Education, Vol. 47, no. 2, May
2004, pp 196-203.

[2] C. J. Tseng “Digital System Design Using Microarchitectural
Modeling”, IEEE Trans. Education, vol. 51, no. 1, Feb. 2008, pp. 93 –
99.

[3] J. S. Yuan and J. Di, “Teaching Low-Power Electronics Design in
Electrical and Computer Engineering”, IEEE Trans. Education, Vol. 48,
no. 1, Feb. 2005, pp 169-181.

[4] http://cmp.imag.fr
[5] http://www.europractice.com/
[6] http://www.cnfm.fr
[7] E. Sicard “Microwind User’s Manual, lite version 3.5”,

www.microwind.org, INSA editor, 2009
[8] E. Sicard, S. Ben Dhia “Basic CMOS cell design”, November 2006 at

McGraw-Hill, USA, ISBN: 007148839, DOI:10.1036/0071488391
[9] E. Sicard, S. Ben Dhia “Advanced CMOS cell design”, McGraw-Hill

professional series, November 2006, ISBN: 0071488367,
DOI:10.1036/0071488367

