
Learning-by-Gaming in HW/SW Codesign

Vadim Pesonen, Maksim Gorev, Kalle Tammemäe

Department of Computer Engineering

Tallinn University of Technology

Tallinn, Estonia

{vadim.pesonen, maksim.gorev, kalle.tammemae}@ati.ttu.ee

Abstract — HW/SW Codesign is a part of renewed Computer and

Systems Engineering Master Curriculum at Tallinn University of

Technology. Already historically, practical works are related to

computer game design elements on different FPGA-based

prototyping platforms. Current platforms, based on Xilinx

Spartan-3 chips, enable complex designs where the only

restrictions are the course duration and student imagination. In

this paper, the status of course along with the most interesting

student design examples are provided and analysed. The

students' feedback is used to refresh the course material and

complexity of laboratory task set.

Keywords – Hardware/Software Codesign, system-level design,

education, computer engineering curriculum

I. INTRODUCTION

With the growing industrial importance of
hardware/software codesign the necessity for educating
engineers in this field is a regular part of CE curriculum around
the world. But purely theoretical knowledge is impractical
without hands-on experience with recognised EDA tools and
advanced development platforms. The complexity of modern
HW/SW design can be effectively overcome with interactive
and entertaining laboratory works [1].

Game design projects are widely and successfully used for
teaching programming, and it was decided to apply the same
method for HW/SW codesign. In a similar work [2] an FPGA
was used to implement an object detection algorithm for a
robot soccer game. Although probably designed as a student
project in the frame of a certain course, the paper focuses
mainly on design issues.

HWSW Codesign [3, 4] has been read in Dept. CE of
Tallinn University of Technology since 1998. After several
redesigns of the curricula and implementation of Bologna
system, it is now defined as part of the Master level curriculum
of Computer and Systems Engineering at faculty of
Information Technology.

The course objectives are defined as follows: After
completing the course the student is expected to:

• be able to select the proper modelling languages and

tools

• be aware of the design space limits and freedom in

case of pure HW or SW design or in case of a

blended system

• be able to analyse a model concurrently in the HW

and SW contexts

• be able to partition a design on a basis of estimations

and analysis

• possess the skills to implement different cross-

domain interaction schemes and protocols

• be able to use standard off-the-shelf software

implementations as well as IP core (soft, firm, hard)

processors

• be able to analyse a design in the frame of dynamic

reconfiguration on a basis of temporal quality

requirements

• know the contemporary HW/SW mixed system

implementation platforms and frameworks

• be able to accomplish team tasks

Currently, the course is provided during the spring
semester. Students possess a significant flexibility in planning
their curriculum and are free to choose whether to take the
course in the first or the second year of their master studies.
The course is therefore accessible to them either in the second,
or the last semester.

Those students who are taking the course in the first year
usually have only a limited experience with digital electronics
design, but are likely to have taken the introductory course to
hardware description languages (HDL-s). However, the
synthesis of digital circuits has been explained at this point
only in the broad strokes.

The other students may have taken one or several of the
following courses: Digital System Design, Labs on Digital
System Design, Computer Engineering Project, Digital
Systems – Team Project, Computer Engineering – Team
Project, VLSI Synthesis, System-on-a-Chip Design, and
several others.

All of the listed courses are optional and as a result students
arrive with a notably different background knowledge and
experience. This was taken into account when planning the
laboratory works for the course at hand and it is reflected in
their structure.

II.STRUCTURE OF THE PRACTICAL WORKS IN HW/SW CODESIGN

COURSE

A contemporary laboratory part of the course was
introduced in 2008. It consists of four levels in ascending order
of complexity:

1. Introductory – first hands-on experience with XESS
XSA-3S1000 boards [5], downloading and programming
previously implemented tutorial designs.

2. Beginner – simple HW-design using VHDL or Verilog.

3. Intermediate – design of a VGA demo along with
PicoBlaze controlled moving element on a screen. VGA
generator is reused from one of XESS tutorials. The emphasis
is on programming and instantiating of the soft-core processor
and VGA IP cores.

4. Advanced – enhanced design where HW/SW trade-offs
have to be investigated and results analysed.

The first lab is carried out under direct supervision and is
mainly intended for those students who lack experience with
digital system design in general or with the FPGA prototyping
boards. Students learn the main features and capabilities of
Xilinx ISE, the Xilinx Spartan-3 chip and the development
board. After that student teams are free to take the development
kits home and visiting the laboratory becomes voluntary.
Freely available versions of the development software are
enough for this course, and about half of the students found it
more convenient to work at home. The difficulty level of the
introductory designs is that of simple decoders and small state
machines.

The aim of the second lab is to apply the theoretical
knowledge of HDL-s. The designs are still simple at this level,
but the students are now to pass through all the development
stages – from specification to chip configuration –
independently, and they are free to match or challenge their
HDL and hardware knowledge by choosing an appropriate
design. By doing so students usually find this work practical
regardless of their previous digital design experience.
However, the selected designs significantly vary and their
range extends from simple arithmetic-logic units to more
complex ones, such as interface controllers.

The previous two laboratory works form a solid ground for
the next steps and by the third laboratory work all students are
prepared well enough to combining software control with
hardware components. At this point the hardware part of the
design is still accomplished by putting together predefined IP
blocks. The aim is to learn how to accommodate both software
and hardware within a single design, and to get a feel of using
programmable soft-core processors, their instruction set,
features and particularities.

For better student motivation the tasks in this laboratory
work had to be made interactive and with a visual feedback. An
FPGA development board with an attached keyboard and a
monitor would make a good platform for that – this way
students get a feel of a real system, capable a complex
interactive behaviour.

Since it is not the aim of this work to familiarize just with
the keyboard and screen interfaces, the corresponding IP cores
were provided. To further abstract the students away from the
interface details, the keyboard and video controllers were
accordingly adjusted for the task of this lab.

All the complexity of image manipulation is covered by the
provided VGA generator, which maps the pixel data to the
corresponding memory cells. Additional multi-port memory
controller significantly simplifies memory access. Both video
and memory controllers are freely available from the board
manufacturer's website.

The configurable keyboard controller disguises the process
of key recognition and, depending on the current functioning
mode, issues out a short code for a pressed key set. For
example, if only the “arrow” keys are used in the design, then
the keyboard controller is configured to generate an encoded
2-bit word.

Generally, students are free to choose any soft-core
processor they fancy, but the majority prefers the Xilinx
PicoBlaze, as it is very stable, easy to use, well documented
and its instruction set is rich enough for most simple control
oriented tasks. PicoBlaze also performs very well in terms of
die area, as it is specifically designed for the FPGA
implementation.

All major components are therefore provided, but any
additional functional units and glue logic are the responsibility
of the students. Most of the student designs in this laboratory
work are relatively simple implementations of well-known
video scenarios, such as a “snake” game, a text editor or a
calculator. The reason behind such selection is simple
application logic, few required colours (black-and-white in
many cases) and limited amount of data manipulation.

In the final laboratory work students have to design the
whole system from the ground up, including HW/SW
partitioning trade-off considerations. The aim is to learn how to
correctly partition hardware and software according to certain
constraints, such as logic area, power consumption or
development time. Such analysis turned out to be very difficult
for some of the students to perform, as they had little
experience in digital design, and practically all failed to make
exact estimations.

The required several different HW/SW partitions together
with limited digital design experience represented another
difficulty - now part of the application logic, which would
normally be done in software, had to be implemented in
hardware. In addition, the previously used IP blocks may have
had to be modified to suite the application. Many found it
easier to completely redesign a functional block or an interface
controller than adapting an existing one. However, examining
and understanding the interface specifications had to become
part of the work, if that were the case.

III.AN EXAMPLE OF A GAME DESIGN

One of the proposed laboratory works is a simple
implementation of the Sokoban game [5]. “Sokoban” is a
Japanese word for warehouse keeper. Basically, the job of a

warehouse keeper is to place boxes within the warehouse in an
organized manner, and this is the key idea in the Sokoban
puzzle. The rules are simple and yet give rise to challenging
puzzles ranging from simple to extraordinary complex ones.
The game consists of a warehouse made up of walls that form
passages. Within the warehouse are the pusher and an equal
number of boxes and storage locations. The pusher can only
push a box, never pull, and only one box can be pushed at a
time. The goal is to push all the boxes into the storage
locations.

This application is well suited for the task in several ways.
Firstly, the design is comprised of several functional modules
and a fixed communication schema between them. This
allowed to implement certain modules in either hardware or
software without affecting the rest of the design. Secondly, the
game is visually comprised of a very limited number of
different objects and its logic is carried out by repositioning
them on the screen. The application simply honours keyboard
activity and maintains a map of the game objects. This is quite
easily achieved in both software and hardware. Finally, the
custom VGA engine is capable of displaying one hundred (ten
by ten) predefined images on the screen.

The system consists of the game logic processor, the
memories, the video controller, and the keyboard controller.
The employed video standard is VESA 800x600 @ 72Hz. The
reason behind the selection was the required horizontal clock
frequency (50MHz) that matches the frequency, supplied by
the development board. The video picture is comprised of 100
(10 x 10) image locations which form the game map. The map
is stored in the map RAM, which can be accessed by the
processing unit and the video adapter. Each location on the
map contains an image, which are stored in image ROM and
are accessed only by the video adapter. To form the right VGA
signal, the video adapter keeps track of the imaginary cathode
ray position on the screen and then, in order to retrieve the
pixel colour value, turns first to the map RAM and then to the
image ROM. This procedure is pipelined.

The memories are implemented using on-chip block RAM
(BRAM). Each object image is 80 x 60 pixels in size and there
are up to 16 images in the set. With a 9-bit colour depth the set
would not fit into BRAM and so the images are stored shrunk
in a 20 x 15 pixel aspect ratio. They are later enlarged by the
video adapter by simply repeating each rows and columns of
the image four times during display.

The PS/2 keyboard controller accepts the data sent by the
input device, extracts the key information, encodes it for
convenient processing and sends an interrupt to the processing
unit. Figure 1 illustrates the apparatus setup – the development
board in the centre, the VGA screen and the keyboard.

Figure 1. Apparatus setup.

Several designs with different hardware/software ratio were
implemented. While the VGA adapter was reused in all
configurations, the keyboard controller and game logic
processor were done in both software and hardware. The
Xilinx PicoBlaze processor was employed to run the software.
The block diagram of the system is depicted in Figure 2.

Figure 2. Block diagram of the a game system.

Students reported the following development times of
various game components:

Table 1. Development times (in hours) of the game components.

HW SW

Game logic controller 8 16

Keyboard controller 1 3

VGA controller 32 n/a

Three different solutions, one of which was pure hardware,
were then compared for development time, FPGA logic
utilization and power consumption. The results showed, that
the pure hardware implementation, due to a complex FSM,
was not the most compact in terms of the number of used
CLB-s, but required the least power and was faster to design
and debug (41 hours [32+1+8] versus 43 [32+3+8] and 49

[32+1+16] for other solutions). The latter fact can be explained
by larger digital design experience compared to software
development of that group of students. Also, these students
practised a mixed language design (VHDL + Verilog),
depending on their preferences and readiness.

IV.INTERNATIONAL CONCERNS

English was selected as the primary course language as it is
the language of a large portion of technical literature and
documentation, and is planned to be part of new INTELS
international Master curriculum [7] at Tallinn University of
Technology. This makes the course suitable in other countries
where English as a study language is in use. Generally, the
required development boards or the FPGA vendors are not
limited to the ones used in our university. But in any case the
employed software can be downloaded from the internet at no
charge and the boards, which are among the most affordable,
can be purchased from the manufacturer web-site.

In addition, this course is a good candidate for blended
e-learning because most of study activities can be done outside
of classroom using free-ware development tools and lent
prototyping kits. Most of the course materials are planned to be
open course-ware available through the Estonian e-Learning
Development Centre repository.

V.COURSE RESULTS AND CONCLUSIONS

The proposed set of laboratory works embraces the whole
range of the course goals, and their accomplishment is a good
indicator of whether these goals are achieved or not.
Unfortunately there is not enough data to evaluate the
situations when students gave up after solving the first couple
of laboratory works and dropped the course. Although the
majority did manage to fulfil the tasks successfully, about 30%
of students failed to solve the most complicated laboratory task
but a good grade is still possible when essay is presented and
assessed by peer students positively.

Another demonstrative fact is that students, who
successfully solved all laboratory tasks, didn't have difficulties
in solving additional course tasks – analysis of HW/SW
codesign related paper or thesis and a presentation of a written
essay openly to extend the overall knowledge about the domain
for all course participants.

Both positive and negative feedback was received during
the course. Generally students appreciated the opportunity to
design something real and challenging. Some of them
recognized this course to be the only one during the semester
which put them to work in teams with full intensity. Some of
the more successful game designs are demonstrated to first
years undergraduate students during the Introduction to
Speciality course [8], as an example of how laboratory works
can be both practical and interesting.

On the other hand a significant complexity gap was
mentioned between assignments 3 and 4. Apparently a jump
from component based design to fully custom was too big. In
addition, complexity of the labs was overwhelming for roughly
30% of the students. The main reason was lack of HDL

knowledge and insufficient number of working design
examples, especially for the more complex tasks. Currently,
these problems are being addressed: the tutorials are being
revised and at least basics of HDL-s are compulsory for all
arriving to course.

VI.FUTURE WORK

Apart from considering all the negative feedback that was
previously received, future enhancements include
experimenting with more powerful and flexible soft-core
processors, rather that the PicoBlaze, for the following reasons:

• The general complexity of games (e.g. large number
of game control states, the need for trigonometric
calculations) are too often exceeding the PicoBlaze
processing power.

• The PicoBlaze can only be programmed in its own
assembly language, which limits the use of freely
available game codes. Development of translation
skills from a high-level code to assembly language is
not one of the course goals.

• The PicoBlaze is designed to operate with a
singe-cycle access on-chip memory. Although
on-chip block memory can be explicitly rewritten
using JTAG interface, there is not enough JTAG
programmer modules in the laboratory to distribute
along with kits. As a result the whole design has to be
resynthesised by the student if the software is
modified, which is very inconvenient and time-
consuming. Fixing and reloading just the program is a
better way to debug the system, but to do so the
program must be stored in an external memory. In
addition, employing only the on-chip memory would
mean limiting the experience of using more capable,
though slower, external dynamic memories.

Among the more powerful soft-core processor candidates is
the Xilinx MicroBlaze. Being widely used in the industry, it
represents a significant interest in an academic sense. It also by
far outperform the PicoBlaze in the above listed areas.
However, the flexibility of MicroBlaze makes it more difficult
to configure and manage, demanding a significant portion of
students' time during the course. Consequently, a large amount
of work has to be prepared beforehand, as the current emphasis
is on implementing of a learning object, which is intended to
shorten learning time and to offer students a systemic set of
IP-s ready to embed into real application. Another drawback of
the MicroBlaze, in the frame of this course, is its restricted
suitability for distant studies – the trial period of the freely
available Xilinx ISE Embedded Edition evaluation suite is
limited to 30 days. As the course lasts longer, student have to
return to the university laboratory, where computers are
equipped with full-licensed EDK tool.

Other soft-core processors, which are considered as
alternatives to the PicoBlaze, include the OpenRISC processor
[9] and the COFFEE RISC core [10]. A significant advantage
of these two processors over MicroBlaze is the access to their
source codes.

REFERENCES

[1]Min He, Ming-Che Tsai, Xiaolong Wu, Fei Wang, Ramzi Nasr,
"Hardware/Software Codesign – Pedagogy for the Industry," itng,
pp.279-284, Fifth International Conference on Information Technology:
New Generations (itng 2008), 2008.

[2]Tim Kaulmann, Marc Strünkmann, and Ulf Witkowski, FPGA-based
Object Detection in Robot Soccer Application, Proceedings of the 3rd
International Symposium on Autonomous Minirobots for Research and
Edutainment (AMiRE 2005).

[3]M. Kruus, P. Ellervee, "Four Years of System-on-Chip Curricula:
Experiences at Tallinn University of Technology." The 6th European
Workshop on Microelectronics Education (EWME'2006), Stockholm,
Sweden, pp.88-91, June 2006.

[4]M. Kruus, K. Tammemäe, P. Ellervee, "SoC Curricula at Tallinn Technical
University." The 19th NORCHIP Conference pp.99-104, Stockholm,
Sweden, Nov. 2001.

[5]XESS Corporation. http://www.xess.com/

[6]The official Sokoban website. http://www.sokoban.jp/.

[7]The Archimedes Foundation. http://str.archimedes.ee/redirect/381.

[8]Maksim Gorev, Vadim Pesonen, Peeter Ellervee, “Introducing Computer
Systems Related Topics in the First Study Semester”. Accepted for 8th
European Workshop on Microelectronics Education (EWME),
Darmstadt, Germany, May 2010.

[9]The OpenRISC project . http://www.opencores.org/project,or1k.

[10]The Coffee project. http://coffee.tut.fi/.

