

Some big: good... many small: better!

 Introduction: towards multi-problem and multi-core
Challenges for new generation of applications

 Effective and flexible exploitation of new platform
capabilities

Adaptability
 The BBQ RunTime Resource Management approach

Tradeoff, achievements, the BOSP open source project
 Screen-cast of use cases

BBQ in action
 Work in progress

Roadmap and new FP7 projects

 From single-core to multi-core processors

Source: B. Falsafi. “Reliability in the Dark Silicon Era”. IOLTS2011 Keynote, July 2011.

 STHORM/P2012 69 multi-core 28nm SoC, need to:
- Consider frequency control at SoC and cluster granularity
- Introduce PVT (Process, Voltage, Temperature) sensors
- Joint design of firmware and OS layers

 Suppport for parallel code development
 Foster reusable software components

independent and parallelized SW modules (filters)
well defined interfaces to support composition (pipelines)

 New programming paradigms
to better support parallelized modules development
not binded to a specific target

“write one run anywhere”

 Usable development environments
high level of abstraction design of applications
target specific simulation and optimization support
support for multiple programming models

 OpenCL: “the” industrial standard

 OpenVX: the upcoming standard
which introduces the concept of “task manager”

 Embedded is moving towards many-core architectures
Many similar computing elements
Complex applications are decomposed in parallel modules

 Device functionality is polymorphic
Depends on the programming
Can change at run-time adapting
to the new scenario

 Resemble the HPC style
See last FP7 calls...

10.240 processors

Barcelona Supercomputing Centre

It's just a change
of “scale factor”

Tilera Tile-Gx100
100 independent cores

Same benefits
but “programmable”

Introduction to RTRM
overall view on goals, requirements and design

 Computing platforms convergence
targeting both HPC and high-end embedded and mobile systems
parallelism level ranging from few to hundreds of PEs

thanks to silicon technology progresses

 Emerging new set of non-functional constraints
thermal management, system reliability and fault-tolerance

area and power are typical design issues

embedded systems are loosing exclusiveness

effective resource management policies required to properly
exploit modern computing platforms

 Run-Time Resources Management (RTRM) is about
finding the optimal tradeoff between

QoS requirements and resources availability

 Target scenario
Shared HW resources

upcoming many-core devices are complex systems
process variations and run-time issues

Mixed SW workloads
resources sharing and competition

among applications with different and time-varying requirements
 Simple solutions are required

support for frequently changing use-cases
suitable for both critical and best-effort applications

 Many-core platforms enable a new set of applications
computer vision is just one of the main interesting

 Multiple devices, subsystems
Heterogeneous -> Homogeneous (Many-Cores)

Scalability and Retargetability

 Shared resources among different devices and
applications
Computation, memory, energy, bandwidth…

System-wide resources management

 Multiple applications and usage scenarios
Run-time changing requirements

Time adaptability

 Different approaches targeting resources allocation
Linux scheduler extensions

mostly based on adding new scheduler classes [2,4,7]

force the adoption of a customized kernel
Virtualization

Hypervisor acting as a global system manager
Both commercial and open source solutions

Commercial: e.g. OpenVZ, VServer, Montavista Linux; Open: e.g. KVM, Linux Containers
require HW support on the target system

User-space approaches
more portable solutions [3,6,11]

mostly limited to CPU assignment

[2] Bini et. al., “Resource management on multicore systems: The actors approach”. Micro 2011.
[3] Blagodurov and Fedorova, “User-level scheduling on numa multicore systems under linux”, Linux Symposium 2011.
[4] Fu and Wang., “Utilization-controlled task consolidation for power optimization in multi-core real-time systems”. RTCSA 2011.
[6] Hofmeyr et. al.,. “Load balancing on speed”. PpoPP 2010.
[7] Li et. al., “Efficient operating system scheduling for performance-asymmetric multi-core architectures”. SC 2007.
[11] Sondag and Rajan, “Phase-based tuning for better utilization of performance-asymmetric multicore processors”. CGO 2011.

 Different approaches targeting resources allocation

more portable solutions [3,6,11]

mostly limited to CPU assignment

[2] Bini et. al., “Resource management on multicore systems: The actors approach”. Micro 2011.
[3] Blagodurov and Fedorova, “User-level scheduling on numa multicore systems under linux”, Linux Symposium 2011.
[4] Fu and Wang., “Utilization-controlled task consolidation for power optimization in multi-core real-time systems”. RTCSA 2011.
[6] Hofmeyr et. al.,. “Load balancing on speed”. PpoPP 2010.
[7] Li et. al., “Efficient operating system scheduling for performance-asymmetric multi-core architectures”. SC 2007.
[11] Sondag and Rajan, “Phase-based tuning for better utilization of performance-asymmetric multicore processors”. CGO 2011.

The Barbeque Approach to RTRM
an overall view on proposed tool architecture



 BarbequeRTRM Framework
multi-objective optimization strategy
easily portable and modular design
run-time tunable and scalable policies
open source project

http://www.2parma.eu

 Introduction of a new modular policy (YaMS)
partition available resources (R) on applications (A)

considering A priorities and R “residual” availabilities



which degrade solution metrics
e.g. stability and robustness

 Run-time reconfigurable workloads
e.g. Scalable Video Coding (SVC)

single input stream, different decoding configurations

 Stream processing applications
which means not only multimedia processing

e.g. packet sniffing and analysis, pattern matching, ...

 Well defined Abstract Execution Model (AEM)
loop of actions, until no more workload to process

Setup, Configure, Running, Monitor

running suspended

Reconfigure

Run in configuration X Run in configuration Y

tQ
oS

 E
va

l

 Defines the (expected) application behavior
loop of actions, until no more workload to process

 Abstract the communication channel
using “threaded FIFOs”, (WIP) Binder support on Android

 Provides APIs at three different abstraction levels
Plain API, AEM API and AS-RTM API

 Hides the Synchronization-Protocol details

AEM Abstract API
 callbacks based

with default
implementations

 hide all the RTM
boilerplate code

Framework dependencies
External libs, tools, ...

Framework Sources
BarbequeRTRM, RTLib

Framework Tools
PyGrill (loggrapher), ...

Contributions
Tutorials, demo

Public GIT repository

 Based on (a customization of) Android building system
freely available for download and (automatized) building

https://bitbucket.org/bosp

Bellasi and Massari, Tutorial - “The BarbequeRTRM Framework
2PARMA Framework for Run Time Resource Management
of Multi-Core Computing Platforms”. Fall School Forest,
Freudenstadt, 09/2012.

 We cannot cover internal details
please check project website and past presentations

Bellasi et.al., “A RTRM proposal for multi/many-core platforms and
reconfigurable applications”. ReCoSoC 2012.

Complete Framework Review
+ Hands On Sessions

Complete Framework Review
+ Hands On Sessions

Results on Multi-Core NUMA
machine

Results on Multi-Core NUMA
machine

Official Project
Website

Official Project
Website

http://bosp.dei.polimi.it

The BarbequeRTRM Framework
Conclusions and Future Works

 Framework for System-Wide RTRM
flexibility and scalability of the RTRM strategy

thanks to its hierarchical and distributed control structure
acceptable overheads for real usage scenarios

including those with variable workload
tunable multi-objective optimization policies

to cope with several design constraints and goals
e.g., performance, power, thermal and reliability, ...

promising results in terms of performance improving
and power consumption reduction

for a highly parallel workload, on a NUMA multi-core architecture

availability of a simple API interface
making straightforward for the programmers to take full advantages
from framework services

Wide spectrum of
activities

covering different
abstraction level

If you are interested, please check
the project website for further information
and to keep update with the developments

Under negotiation in FP7

Strep – run time for reliability and QoS
guaranteed. HPC and ES synergy

IP – mixed criticalities, WSN+cloud

Prof. William FORNACIARI

home.deib.polimi.it/fornacia

william.fornaciari@polimi.it

The POLIMI team

BBQ Fmk: P.Bellasi, G.Massari
Metrics for thermal: D.Zoni, S.Corbetta, F.Terraneo
New runtime directions:, L.Rucco, C.Caffarri, C.Brandolese
DSE: C.Silvano, G.Palermo, V.Zaccaria, E.Paone
Progr. Paradigms: G.Agosta, Scandale

Backup Slides

 Workloads: increasing number of
concurrently running applications

Bodytrack (BT) (PARSEC v2.1)

modified to be run-time tunable and integrated
with the BarbequeRTRM

https://bitbucket.org/bosp/benchmarks-parsec

 Platform: Quad-Core AMD Opteron 8378
4 core host partition, 3x4 CPUs accelerator partition

running up to 2.8GHz , 16 Processing Elements (PE)

 Compare Bodytrack original vs integrated version
using same maximum amount of thread

the BBQ Managed version could reduce this number at Run-Time
 Original version controlled by Linux scheduler,

integrated version managed by BarbequeRTRM

 Performances profiling
using standard frameworks

Using Linux perf framework to collect
HW/SW performance counter

IPMI Interface for system-wide power
consumption [W]

(*) The lower the better, for all metrics but the IPC

positive bar corresponds to an improvement while a negative bar represent a
deficiency of the managed application with respect of the original one

Support monitoring, management and control at different
granularity levels to reduce overheads

Different granularity
 accellerated application
 operating system
 computation fabric
 computation clusters

OS

Computation fabric

System
Policy

Fabric
Policy

cluster
Policy

Application
Policy

cluster
Policy

C
onstraints

R
equirem

ents

How to reduce control complexity?

Each granularity level collects requirements from lower
levels and it provides constraints to lower levels

Map “virtual resources” on “physical resources” at
run-time to achieve optimal platform usage

Considering run-time phenomena
 process variation
 hot-spot and failures
 workload variation

How to support optimal system
resource exploitation?
Virtual resources representation to support accounting;
map on physical ones at run-time to handle variations

Critical
workloads

RTRM

Best-effor
workloads

Resources

Virtual resources

Physical resources

Accounting
&

Mapping

Grant resources to critical workloads while optimize
resource usage by best-effort workloads

How to handle resources granted to
critical applications?
Dynamically grant these resources to best-effort
workloads while not required by critical ones

Considering a mixed-workload scenario
 critical workloads could be off-line

optimized (e.g., using DSE)
 other workloads runs concurrently

Critical
workloads

RTRM

Best-effor
workloads

Resources

QoS

resources
accounting

DSE

Applications access
resources based on

their needs and
priority

Because of its “sweet analogy” with something everyone knows...

Mixed Workload
sausages, steaks, chops

and vegetables

Resources
coals and grill

QoS
how good is the grill

Policy
the cooking recipe

Priority
how thick is the meat

or
how much you are hungry

Task mapping
the chef's secret

Thermal Issues
burning the flesh

Reliability Issues
dropping the flesh

Overheads
Cook fast and light

Applications
the stuff to cook

