Some Design Issues for 3D NoCs: From Circuits to Systems

Frédéric Pétrot with many inputs from Abbas Sheibanyrad, Florentine Dubois, Sahar Foroutan, Maryam Bahmani TIMA System Level Synthesis Group Grenoble, France

Outline

- 2D (Asynchronous) NoCs
- 3D-Integration and NoCs
 - Vertical Link Asynchronous Serialization
 - Memory on logic and 3D-NoC
 - Vertically-Partially-Connected 3D-NoC
 - A few open problems
- Conclusion

Technology (R)Evolution !

ReCoSoC 2013 - Frédéric Pétrot

Scalability !

- Key role of communication infrastructure
 - Bus: shared medium, broadcast all
 - NoC: data travels along a path, many active concurrently

Clock Distribution

- Nightmare of Global Synchronization
 - Global distribution of single clock signal over chip impossible
 - Clock skew claiming larger relative part of total cycle time
 - Clock distribution network demanding increasing portions of power and area budgets
 - Fabrication Process Variation
 - Temperature Variation

GALS/DVFS Paradigm, Prominent Solution

- Reducing the Problem to a number of smaller Sub-Problems
 - Several Independent Clock/Voltage Clusters
- Networks-on-Chip as a Structured Approach
 - The network: Globally Asynchronous part
 - Subsystems: Locally
 Synchronous parts

BUT ...

- How separated synchronous domains can robustly communicate together?
 - Transferring data between different frequency domains requires safe synchronization
 - Metastability, unavoidable state of bistable devices, is a major concern

Asynchronous NoC, A Viable Solution

- Reduces the need for synchronization
 - In Network Interface Controller only: 2DFFs to resolve metastability
 - Local Frequency and Voltage control possible (VFI for DVFS)
- Reusability in a Plug-and-Play Fashion
- Almost Zero Idle Dynamic Power Dissipation
- As Fast as Possible
 - Global Timing Independence
- Scalability
 - Cluster Size Independence

Asynchronous NoC

- Fully asynchronous architecture for the network
- Synchronous compliant interfaces
 - Synchronous-to-Asynchronous FIFO
 - Asynchronous-to-Synchronous FIFO

Distributed Router

Asynchronous design in a nutshell

Local handshake instead of global clock

4-Phase protocol

Data availability triggers the computation:

```
wait for valid inputs
```

output = f(inputs)

complete input transactions

wait for output ready to receive

send output

complete output transaction

Asynchronous design in a nutshell

Signaling required to minimize delay assumptions, *e.g.* between Data and Request

=> Embed Request into Data

Dual-Rail coding: simplest delay insensitive code

Completion detection indicates computation done: Ack <= Wire₀ or Wire₁

Asynchronous Design Cells (Muller gates)

Experimental Results

- STMicroelectronics CMOS 90nm GPLVT
- A boundless throughput of connected block as a Hypothesis for throughput measurement

Туре	Transistors	Surface	Min Latency	Max Latency	Max Throughput				
2-Place SA_FIFO	1338	1422 μm²	177	2.39 GEvents/S					
3-Place SA_FIFO	1969	2054 μm²	207	207 pS 2.36 GEve					
8-Place SA_FIFO	5126	5215 μm²	219	2.22 GEvents/S					
2-Place AS_FIFO	1388	1452 μm²	271 pS + T	271 pS + 2T	1.50 GEvents/S				
3-Place AS_FIFO	1942	2011 μm ²	247 pS + T	247 pS + 2T	2.61 GEvents/S				
8-Place AS_FIFO	5054	5107 μm²	263 pS + T	263 pS + 2T	2.89 GEvents/S				
6-Place SS_FIFO	2985	2940 µm²	362 pS + T	362 pS + 2T	2.61 GEvents/S				
8-Place SS_FIFO	3956	3869 μm²	366 pS + T	366 pS + 2T	4.60 GEvents/S				

Asynchronous NoCs

Academic work:

- ANoC, CEA-LETI, 2005, 130 nm (actual chip)
- Alpin, CEA-LETI, 2007, 65 nm (actual chip)
- QNoC, Technion, 2004
- Mango, TU Denmark, 2005, 120 nm
- ASPIN, LIP6, 2008, 90 nm
- Hermes, PUCRS, 2010, 65 nm
- ...

Industrial outcome:

 ANoC used in STMicro manycore platform STHorm (2012, 28 nm)

Outline

- 2D (Asynchronous) NoCs
- 3D-Integration and NoCs
 - Vertical Link Serialization
 - Memory on logic and 3D-NoC
 - Vertically-Partially-Connected 3D-NoC
 - A few open problems
- Conclusion

... when the population grows!

- As population grows, tendency to build vertically rather than horizontally
 - Increase the density
 - Land more and more expensive
 - Decrease the length and the number of long paths
 - Average time and energy for moving from one point to another unaffordable
 - However new methods required for going Up & Down!

Three-Dimensional Integration

Three-Dimensional Integration

10/07/2013

ReCoSoC 2013 - Frédéric Pétrot

Three-Dimensional Integration

- Tomorrow, true 3D using TSVs?
 - ITRS 2011 update predictions

	2011-2014	2015-2018
TSV diameter	4-8 μm	2-4 μm
TSV pitch	8-16 μm	4-8 μm
TSV depth	20-50 μm	20-50 μm
Number of tiers	2-3	2-4

Courtesy Ivan Miro Panades CEA-LETI

The Third Dimension

	Number of Nodes	Switch Degree	Network Diameter	Number of Channels	Number of Vertical Channels	Number of Bisection Channels	Load of the Busiest Channels ⁽¹⁾		
2D-Mesh	$N = n^2$	5	2 √N	$6N-4 \sqrt{N}$	0	2 √N	$C \times \frac{1}{4} \sqrt{N}$		
3D-Cube	$N = m^3$	7	3 ³√N	$8N-6 \sqrt[3]{N^2}$	$2N - 2 \sqrt[3]{N^2}$	2 ³ √N ²	C × ¼ ³√N		

⁽¹⁾ Assuming uniform destination distribution and dimension-ordered routing, C is the average load injected to the network by each node

How Many Layers?

	Number of Nodes	Switch Degree	Network Diameter	Number of Channels	Number of Vertical Channels	Number of Bisection Channels	Load of the Busiest Channels ⁽¹⁾
30x30	900	5	60	5280	0	60	$C \times \frac{1}{4} \times 30$
4x15x15	900	7	34	6510	1350	120	$C \times \frac{1}{4} \times 15$
9x10x10	900	7	29	6640	1600	180	C × ¼ × 10

⁽¹⁾ Assuming uniform destination distribution and dimension-ordered routing, C is the average load injected to the network by each node

Through-Silicon-Via

- The most promising Technology of Vertical Interconnection
 - Low Resistance and Capacitance
 - High Bandwidth
 - Low Power Consumption

• Via-First (higher density of TSVs)

- Diameter ≈ 5 µm
- Pitch ≈ 10 µm
- Depth ≈ 20-50 μm
- Via Middle, Cu filled Source : D.Y. Chen, TSMC/IEDM 2009
- Via-Last (lower cost of the process)
 - Diameter ≈ 35 µm
 - Pitch ≈ 50 μm
 - Depth ≈ 40-150 μm

...but, is there any problem ?

- Large area overhead because of large TSV pitch, mainly due to large pads to compensate misalignment of dies
- Guard zone to active area, ESD protection and level shifters
- Important risk of failure due to several additional fabrication step
 - Misalignment
 - Dislocation
 - Void formation
 - Oxide film formation over Copper interfaces
 - Pad detaching

....

Defects due to temperature

Three-Dimensional Integrated Circuits are limited by the number of TSVs to be exploited

*C. Seiculescu et al.

Clock Distribution in 3 Dimensions

- Skew less distribution of clock across dies unrealistic
 - Batch and chip variability
 - Technology heterogeneity
- Distribution of power is an issue too!

Asynchronous 3D-NoC

- Insensitive to delay variation due to temperature or process variation
- Exploitation of the whole (high) bandwidth of TSVs
- Speed ratio of 2 as a worst-case assumption
 - Using STMicroelectronics 90nm GPLVT transistors, 400MHz as the maximum frequency of usual SoCs
 - Using the same technology, 1100 Mflits/s as throughput of an asynchronous NoC

Outline

- 2D (Asynchronous) NoCs
- 3D-Integration and NoCs
 - Vertical Link Serialization
 - Memory on logic and 3D-NoC
 - Vertically-Partially-Connected 3D-NoC
 - A few open problems
- Conclusion

... why not Serialized Vertical Links!

- Remembering
 - Using TSVs guarantees faster vertical data transfer with lower power consumption than horizontal links of moderate size
 - but, pitch of TSVs large, several additional steps of TSV fabrication add potential yield reduction
 - Only small fraction of vertical link capacity exploited in a 3D-NoC
 - Large number of physical connections for each link of the router
- Serialization of data on TSVs is a trade-off between the cost and the performance

24

Vertically Serialized Asynchronous 3DNoC

Circuit Implementation

- Serializer of n:p composed of p Serializer of m:1
 - Serializer of m:1 is a tree of "Self-Controlled Multiplexors"

 $m = Serialization Ratio = \frac{n}{p}$

- *R*, The Serialization Bandwidth Ratio as the throughput cost factor
 - *f*, the transfer rate of parallel input data
 - g, the transfer rate of serialized output data

$$R = Serialization Bandwidth Ratio = \frac{n \times f}{p \times g}$$

$$R = \frac{32 \times 750 M flits/s}{8 \times 2800 M flits/s} = 1.07, and not 4$$

SPICE Simulation Results

- Horizontal Link Throughput: 710 Mflits/sec
 - Router Throughput : 1100 Mflits/sec
 - Inter-Core wire (2mm) delay : 125 ps
- Serialized (8:1) Vertical Link Throughput: 2080 Mflits/sec
 - Serialization Throughput: 2500 Mflits/sec
 - TSV delay: 20 ps
- Speed ratio : (710*32)/(2080*4) = 2.73 (and not 8 !)

	Self-Controlled Multiplexer 2:1	Self-Controlled Demultiplexor 1:2	Serializer 4:1	Deserializer 1:4	Serializer 8:1	Deserializer 1:8
Transistor count	130	132	390	396	910	924
Latency	80 ps	70 ps	150 ps	130 ps	220 ps	190 ps
Throughput	2.9 Gflits/sec	3.2 Gflits/sec	2.5 Gflits/sec	2.8 Gflits/sec	2.5 Gflits/sec	2.8 Gflits/sec

Self-Controlled Multiplexor

* French Patent 09/53637

Signal Transitions

Serialization Cost Analysis

	MD TSV	HD TSV	65 nm	32 nm
Parallel	0.4 mm²	0.016 mm²	0 mm²	0 mm²
Serial x2	0.2 mm²	0.008 mm²	0.012 mm²	0.0039 mm²
Serial x4	0.1 mm²	0.004 mm²	0.016 mm ²	0.0056 mm ²
Serial x8	0.05 mm²	0.002 mm²	0.019 mm²	0.0067 mm ²

Latency of Ser+TSV+Des: 2.0 ns in 65 nm Power: 15 mW (identical to router power)

Outline

- 2D (Asynchronous) NoCs
- 3D-Integration and NoCs
 - Vertical Link Serialization
 - Memory on logic and 3D-NoC
 - Vertically-Partially-Connected 3D-NoC
 - A few open problems
- Conclusion

Memory on Logic in 3D-NoCs

Objectives

- Impact of "DRAM on Logic" stacking from the NoC Performance-Cost viewpoint
- 3DSoCs with DRAM die(s) on top of the NoC
 - Best-effort, Wormhole NoCs
 - Average performance of the system is addressed
- Distribution of a *limited buffering budget* between NoC links at design time in order to improve system average performance.

External DRAM: Bottleneck of the System

- External DRAM pad in classic shared memory MPSoCs creates a drastic hotspot in the SoC and becomes the main bottleneck of the system
- Congested DRAM interface → retro-propagation of traffic
 → Congestion tree → Saturation of the whole SoC
- Significantly Deteriorates the average performance in terms of latency and throughput

NoC Average Performance

- Saturation threshold: maximum load accepted by the network
- Average Latency / Offered Load curves

Issue: Hotspots & NoC Performance Degradation

NoC Saturation Threshold (ST)

Stacked DRAM

- One of the major benefits of 3D technology: DRAM/Logic stacking in a single chip (vs. traditional off-chip DRAMs)
- TSVs offer wide and fast vertical interfaces between logic and DRAM, e.g. Wide I/O :
 - 4x128-bit interfaces (4 channels), 200 MHz I/O bus clock
 - Total peak bandwidth of 12.8GB/second (3.2GB/second/Channel)
- NoC and DRAM-port work approximately with the same throughput
- DRAM port is not anymore the major bottleneck of the SoC
- Saturated link buffers → retro-propagation of traffic → Saturation of the whole SoC

Buffers Sizing at Design Time

 Assignment of large buffers to network links can significantly enhance the NoC saturation point

Buffers are Costly

• More than 80% of the area of a router belongs to its buffers

• Therefore, an efficient buffer dimensioning method is required to deal with the tradeoff between NoC cost and performance.

Detection of Bottleneck Links

- 1. Architectural parameters: e.g. NoC topology, routing algorithm, buffer lengths
- 2. Traffic Parameters: e.g. number and location of memory controllers, hotspot fraction

6.99

h=5%

h=25%

Example: 5% of hotspot traffic vs. 25% of hotspot traffic (ZXY routing algorithm, 8 flits buffer length, uniform background traffic)

Buffer Sizing Approach

- Initial analysis to identify network saturation point: assumes almost infinite buffers, *i.e.* 3200 flits
- Determine average utilization for every buffer b (Utilization(b)) at load (ST – epsilon)
- Compute normalization factor:
 F = (Max_{len} Min_{len})/Bottleneck
 - Max_{len}, Min_{len}: size of largest and smallest buffer (designer choice)
 - Bottleneck: maximal observed buffer utilization (given by simulation)
- Normalize buffer size:
 Size(b) = Utilization(b) * F + Min_{len}

Buffer Sizing Approach: Cost Analysis

- Assignment of buffers between 4 ... 320 flits to each link in 5x5x3 mesh wormhole NoC
- Wide IO memories with **1** or **4** ports
- Number of large buffers is very limited
 - Only 24 links out of 340 have buffers greater than 32 flits
- Resulting average buffer length: 14.67 flits

Buffer Length	4	5	6	7	8	9	12	13	14	17	18	19	20	21	22	23	26	36	39	42	43	48	58	59	97	98	128	131	318	319	320
Number of links (4 ports)	-	124	46	46	12	46	10	-	4	3	4	13	1	4	2	1	-	1	3	2	2	4	2	2	-	Å		3	1	2	1
Number of links (1 port)	328	-	4	-	-	-	-	2	-	-	-	-	-	-	-	1	2	-	-	I	-	I	-	-	1	1	-	-	-	-	1

Cost/Performance Comparison

10/07/2013

ReCoSoC 2013 - Frédéric Pétrot

Outline

- 2D (Asynchronous) NoCs
- 3D-Integration and NoCs
 - Vertical Link Serialization
 - Memory on logic and 3D-NoC
 - Vertically-Partially-Connected 3D-NoC
 - A few open problems
- Conclusion

Vertically-Partially-Connected 3D-NoC !

- Limited number of vertical connections (TSVs)
- Network with different dies fabricated with different technologies
 - Heterogeneity
 - Irregularity

10/07/2013

- Vertically-Partially-Connected Topology as an efficient solution
 - Routing strategy in such an irregular topology is the major problem

Elevator-First Routing Algorithm

- Each router registers
 - A router in its layer with UP link as ascending elevator
 - A router in its layer with DOWN link as descending elevator

... and ... Deadlock !

- Two Virtual Networks in the plane to avoid deadlocks
 - One for ascending packets (Z+)
 - One for descending packets (Z-)
 - Ascending vertical links are Z+
 - Descending vertical links are Z-

Elevator-First Router

The Algorithm

Algorithm 1 - Elevator-First Routing using two Virtual Channels

- @c : current router address
- @s : source router address
- @d : destination router address
- if (@s == @c) then
 - // The current router is the source
 - if (the destination is on a lower tier) then
 - Assign the packet to the virtual network (channel) Z-
 - else if (the destination is on an upper tier) then
 - Assign the packet to the virtual network (channel) Z+

else

// The destination is on the current tier

 Randomly assign the packet to either the virtual network (channel) Z- or Z+

end if

end if

if (@d == @c) then

if (the elevator flag is set) then

- // The current router is an elevator node
- Remove the packet header
- Get the original header (the next flit)
- Send the packet to the ascending (if the assigned virtual channel is Z+) or descending (if the assigned virtual channel is Z-) vertical link

else

- // The current router is the final destination
- Consume the packet

end if

else

- if (The packet destination is in the current tier) then
 - Send the packet to the port determined by the given planar routing algorithm (e.g. X-First in 2D-meshes)

else

// The packet destination is not in the current tier

- Add a new header with the elevator flag set and an address of a vertical link (i.e. elevator) on the current tier (given from local registers) as an intermediate destination
- Send the packet to the port determined by the given planar routing algorithm (e.g. X-First in 2D-meshes) toward the intermediate destination (i.e. the elevator)

end if

end if

Formal Proof of Deadlock-Freedom

 A routing algorithm is deadlock-free if the channels in the network can be numbered such as every routing path uses strictly increasing (decreasing) g(c₄
 channel numbers

... an example ...

Performance ...

Outline

- 2D (Asynchronous) NoCs
- 3D-Integration and NoCs
 - Vertical Link Serialization
 - Memory on logic and 3D-NoC
 - Vertically-Partially-Connected 3D-NoC
 - A few open problems
- Conclusion

TSV failure tolerance

- Using spare TSV?
- Or by redirecting traffic into the network!
 - Provisions for network reconfiguration
 - Cost? Decision making?
 - Dynamicity?

Vertically-Partially-Connected 3D-NoC

Elevator placement: for a given traffic pattern/application domain, how many elevators should be used?

Example for uniform random and localized traffic

Very technology dependent:

- TSV (and associated circuit) size
- TSV throughput
- Yield

Vertically-Partially-Connected 3D-NoC

• Elevator placement:

for a given traffic pattern/application domain, where should the elevators be placed?

Example for a 8x8 3D mesh, uniform random traffic, adaptive routing Optimal minimizes hopcount, ... What about deterministic

routing ? Hot-spot or domain specific traffic ?

Source: Xu et al

Placing 16 pillars on a 8x8 3D mesh

Vertically-Partially-Connected 3D-NoC

 Elevator assignment: for a given placement of the elevators, which elevator is to be assigned to any given node ?

Different random assignments for 50% elevators (uniform random traffic used)

Not just a theoretical question!

10/07/2013

ReCoSoC 2013 - Frédéric Pétrot

Conclusion

3D Interconnections are key to future SoC design

- Zillions of NoC papers in the last decade, but only now companies start using them, ...
- Many, many 3D works in last years, but 2.5D still the current roadmap
- 3D technological options are still quite open

Figure INTC23 Cu and W-based TSV Options as a Function of TSV Diameter and Aspect Ratio, in Accordance with the 3D Interconnect Hierarchy and Roadmap

Conclusion

Let's get prepared for 3D NoCs using technology independent approaches !

- QDI asynchronous circuits are robust
 - Well suited to temperature changes, technology variability, and aging
 - Design and test complexity is the issue
- Serialization limits the number of TSVs
 - Without timing performance degradation
 - With an acceptable area as compared to spared TSVs
 - Power consumption is however high

Conclusion

Let's get prepared for 3D NoCs using technology independent approaches !

- Smart buffer usage enhances NoC behavior
 - Static distribution of buffering capacities useful for memory on logic case
 - What about optimizing sharing for dynamic behaviors?
- Vertically-Partially-Connected Topologies limit the number of TSVs
 - Deadlock free algorithms can be derived
 - Degrade performances
 - Optimizations on several aspects may limit degradation

Dankeschön, ...

INTEGRATED CIRCUITS AND SYSTEMS

Abbas Sheibanyrad Frédéric Pétrot Axel Jantsch Editors 3D Integration for NoC-based SoC Architectures

