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FIR FILTER

Fundamental component in digital signal processing

Computationally complex due to numerous multiply/
accumulate operations
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WHY 
RECONFIGURATION?

Many applications require the change of coefficients...

...but only from time to time

➯ Possibility to reduce complexity
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METHODS OF 
RECONFIGURATION

1. Integrating multiplexers into the design

2. Partial reconfiguration (e.g., using ICAP)

3. Reconfigurable LUTs



5

MULTIPLEXER BASED 
RECONFIGURATION

Multiplexers are integrated in 
add/shift networks

☺ Extremly fast reconfiguration 
(single clock cycle)

☹ Only a limited set of 
coefficients possible!

Fig. 6. Reconfigurable multiplier for the constants 815,621,831,105.

Fig. 7. Same constants as Fig. 6, but allowing one more operator. This results
in two arithmetic operators at LD = 2 and a smaller overall area cost.

and stopband edges, respectively, and pass-/stopband ripple
of 0.05 was chosen. The filter length is chosen such that it
meets the specification and N = M · n, where M is the
decimation factor. After designing the filter with firpm with
the respective length and equal weight of 1 for both pass- and
stopband, the coefficients are rounded to 14 bits, which results
in a maximum of 13 active bits effectively. The filter input bit
width is again set to 8 bits. Table I shows the filter length for
the overall filter and the subfilters, the required components
as well as the bit level cost for the ReMCM block, for each
unique subfilter, for a MCM block containing all coefficients
and for the symmetry multiplexers. Lastly, an estimate is given
for the area reduction due to the replacement of adders with
a loop and MUX before the structural adders. All results for
decimation of 4 to 8 are in square micrometer and based on
the cost estimate from [9]. From the results in Table I, it
can be seen that the fused MCM block requires between 8
and 17% less area compared with the implementation of a
MCM block which contains all coefficients. With increasing
decimation and filter length, the area increases moderately. The

filter with M = 8 is twice as long as the filter with M = 4
but the ReMCM implementation only requires 26% more area.
The savings due to reduction of adders before the structural
adders increases linearly to more than three times the size of
the MCM block with all coefficients. By comparing the cost
of implementation of unfused subfilters with that of ReMCM,
savings of up to 38% are possible. The savings at the structural
adders is more than twice the size of the ReMCM block.

V. CONCLUSION

An algorithm which implements optimized reconfigurable
multiple constant multiplication was presented. It is capable
to generate a reconfigurable block that produces the product
of an input multiplied by several fundamentals at any time.
The method uses a minimal logic depth adder-graph algorithm
internally and holds opportunities for further improvement.
The experimental results show an area cost improvement
of up to 38% compared with a parallel implementation of
the subfilters and the results for single output ReMCM are
comparable to those of the previously published algorithms.
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PARTIAL
RECONFIGURATION

Partial regions of the FPGA are 
reconfigured via ICAP

☺ Least resources 

☺ Arbitrary coefficients...

☹ ... but synthesis needed for each 
coefficient set

☹ Slow reconfiguration (≈μs/ms)!
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RECONFIGURABLE 
LUTS

Changing the LUT content only

Routing has to be fixed

First academic tool available  (TLUT flow, [Bruneel et al. ’11])

☺ Fast reconfiguration (a few clock cycles, ≈ns/μs)

☺ Arbitrary coefficients...

☹ ... but (again) synthesis needed for each coefficient set

➯ Not, if a generic architecture is transformed to fixed routing
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RECONFIGURABLE 
LUTS

FPGA components to realize reconfigurable LUTs

Older Xilinx FPGAs (Virtex 1-4): 
Shift-Register LUT (SRL16)

Newer Xilinx FPGAs 
(Virtex 5/6, Spartan 6, 7-Series): 
CFGLUT5 (similar to SRLC32E but 
with two output functions)

Other FPGA vendors: 
Distributed RAM or block RAM 
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METHODS OF 
RECONFIGURATION

1. Integrating multiplexers into the design
➯ Logic fixed, routing flexible

2. Partial reconfiguration (e.g., using ICAP)
➯ Logic flexible, routing flexible

3. Reconfigurable LUTs
➯ Logic flexible, routing fixed
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LUT BASED FIR FILTER

Two well-known methods that employ LUTs in a fixed 
structure, suitable for FIR filters:

1. Distributed Arithmetic [Crosisier et al. ’73] [Zohar ’73] ...
... [Kumm et al. ’13]

2. LUT based multipliers [Chapman ’96] [Wiatr et al. ’01]
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The main question is:

"Which architecture performs best?“
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DISTRIBUTED ARITHMETIC

Main idea is rearranging 
the underlying inner 
product

Resulting function 
(realized as LUT) is 
identical for each bit b

➯ Less configuration memory

x̃N
b = (x0,b, x1,b, . . . , xN−1,b)

T

y = c · x =
N−1�

n=0

cn xn
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n=0

cn

Bx−1�

b=0

2bxn,b

=
Bx−1�

b=0

2b
N−1�

n=0

cnxn,b

� �� �
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DISTRIBUTED ARITHMETIC 
OVERALL ARCHITECTURE

Pre-processing to 
exploit coefficient symmetry

Reconfigurable LUTs
Output adder tree

Reconfiguration circuit
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DISTRIBUTED ARITHMETIC 
MAPPING TO CFGLUT5
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LUT MULTIPLIER
FIR FILTER

cn · xn� �� �
Bc×Bx mult.

= cn

L−1�

b=0

2bxn,b

� �� �
Bc×L mult.

+2L cn

L−1�

b=0

2bxn,b+L

� �� �
Bc×L mult.

+ . . .

Basic Idea: Split a multiplication into smaller chunks which 
fit into the FPGA LUT:
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LUT MULTIPLIER
MAPPING TO CFGLUT5
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LUT MULTIPLIER
OVERALL ARCHITECTURE

Replaced by reconfigurable multipliers
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CONTROL ARCHITECTURE
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RESOURCE COMPARISON

Distributed Arithmetic LUT Multiplier FIR

                 LUTs with       inputs

CFGLUTs:

Bx + 1 M       LUTs with       inputs

CFGLUTs:

BxM

M �Bx/4� �Bc/2 + 2�

≈ 1

4
BxM(Bc/2 + 2)

(Bx + 1) �M/4� �Bc/2 + 1�

≈ 1

4
(Bx + 1)M(Bc/2 + 1)

                         : No. of unique taps

              : input/coefficient bit widthBx/Bc

M = �N/2�
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RESOURCE COMPARISON

Distributed Arithmetic LUT Multiplier FIR

                 LUTs with       inputs

CFGLUTs:

Bx + 1 M       LUTs with       inputs

CFGLUTs:

BxM

M �Bx/4� �Bc/2 + 2�

≈ 1

4
BxM(Bc/2 + 2)

(Bx + 1) �M/4� �Bc/2 + 1�

≈ 1

4
(Bx + 1)M(Bc/2 + 1)

Surprisingly, CFGLUT requirements are very similar!
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RESOURCE COMPARISON

Distributed Arithmetic LUT Multiplier FIR

Adders: Adders:
M +Bx + (Bx + 1) �M/4� 2M − 1 +M �Bx/4�

➯ So, LUT multiplier based FIR filters are better when...

...,i.e., the input word size        is greater than 
approximately half the number of coefficients

2M − 1 +MBx/4 < M +Bx + (Bx + 1)M/4
...3

4
M − 1 < Bx

M = �N/2�
Bx
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RESULTS: 1ST EXPERIMENT

Synthesis experiment for Virtex 6

Nine benchmark filters with length N=6...151

Input word size

➯ Very fast reconfiguration times: 49...106 ns 

➯ High clock frequencies: 472 MHz/494 MHz (DA/LUT mult.)

Bx ∈ {8, 16, 24, 32}
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RESULTS: 1ST EXPERIMENT
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(a) Input word size Bx = 8 bit

6 10 13 20 28 41 61 119 151
−40

−20

0

20

40

Filter length N

Sl
ic

e
im

pr
ov

em
en

t[
%

]

(b) Input word size Bx = 16 bit
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(c) Input word size Bx = 24 bit
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(d) Input word size Bx = 32 bit

Fig. 7. Slice improvement of the reconfigurable FIR filter based on LUT multipliers in comparison with the reconfigurable DA FIR filter

TABLE III
COMPARISON OF A SINGLE FILTER MIRZAEI10 41 WITH Bx = 16 BIT

USING ICAP RECONFIGURATION AND THE CFGLUT METHODS

Method S [bit] Slices fclk [MHz] Trec [ns]

RPAG [25] with ICAP 746496 502. . . 569 386.7. . . 448.8 233280
Reconf. FIR DA [10] 1920 1071 521.9 61.3
Reconf. FIR LUT 14784 1108 487.8 65.6

the optimization heavily depends on the numeric coefficient
values, ten different filters were designed with the same length
as the mid size benchmark filter MIRZAEI10 41 and an input
word size of 16 bit. These served as realistic configurations
which can be reconfigured via ICAP.

The results are summarized in Table III. The number of
slices using RPAG optimized FIR filters varied for the differ-
ent filter instances from 502. . . 569. Hence, a reconfiguration
region with a capacity of 569 slices has to be reserved. The
reconfiguration is organized in frames of 80 slices, thus, eight
frames have to be reserved where each frame contributes with
93312 bit, leading to a reconfiguration memory requirement
of SICAP = 746496 bit per filter instance. Compared to the
CFGLUT-based methods, a factor of 388 and 50 more recon-
figuration memory is necessary, respectively. Assuming that
the full performance of ICAP can be used, the reconfiguration
takes Trec = SICAP/32 · 10 ns = 233µs. Thus, compared
to the slowest CFGLUT methods with 65.5 ns, the ICAP
reconfiguration is a factor of 3556 slower. The price for these
fast reconfiguration times and low memory requirements is
paid by a slice overhead of 88% and 95%, respectively.

VIII. CONCLUSION

We analyzed two reconfigurable FIR filter architectures
based on the CFGLUT primitives which can be mapped to
all modern FPGAs of Xilinx. The first one is based on a

recently proposed method based on distributed arithmetic [10],
the second one uses several instances of a reconfigurable LUT
multiplier [14] to build a reconfigurable multiplier block as
needed in the FIR filter. Similarities between the different
approaches were derived as both methods uses similar arith-
metic transformations to map large LUTs to several smaller
LUTs by the use of additional adders. It turned out that less
CFGLUTs, and, in most of the cases, less slices are needed for
the LUT based multiplier architecture in the case that the input
word size is greater than approximately half the number of
coefficients and vice versa. Both methods have reconfiguration
times and memory requirements which are about four orders
of magnitudes faster than using partial reconfiguration via
the ICAP interface which is paid by approximately twice the
amount of slices.
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LUT Multiplier improvement compared to DA:

As expected, the LUT multiplier architecture is best for low N
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RESULTS: 1ST EXPERIMENT
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(a) Input word size Bx = 8 bit
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(b) Input word size Bx = 16 bit
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(c) Input word size Bx = 24 bit
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(d) Input word size Bx = 32 bit

Fig. 7. Slice improvement of the reconfigurable FIR filter based on LUT multipliers in comparison with the reconfigurable DA FIR filter

TABLE III
COMPARISON OF A SINGLE FILTER MIRZAEI10 41 WITH Bx = 16 BIT

USING ICAP RECONFIGURATION AND THE CFGLUT METHODS

Method S [bit] Slices fclk [MHz] Trec [ns]

RPAG [25] with ICAP 746496 502. . . 569 386.7. . . 448.8 233280
Reconf. FIR DA [10] 1920 1071 521.9 61.3
Reconf. FIR LUT 14784 1108 487.8 65.6

the optimization heavily depends on the numeric coefficient
values, ten different filters were designed with the same length
as the mid size benchmark filter MIRZAEI10 41 and an input
word size of 16 bit. These served as realistic configurations
which can be reconfigured via ICAP.

The results are summarized in Table III. The number of
slices using RPAG optimized FIR filters varied for the differ-
ent filter instances from 502. . . 569. Hence, a reconfiguration
region with a capacity of 569 slices has to be reserved. The
reconfiguration is organized in frames of 80 slices, thus, eight
frames have to be reserved where each frame contributes with
93312 bit, leading to a reconfiguration memory requirement
of SICAP = 746496 bit per filter instance. Compared to the
CFGLUT-based methods, a factor of 388 and 50 more recon-
figuration memory is necessary, respectively. Assuming that
the full performance of ICAP can be used, the reconfiguration
takes Trec = SICAP/32 · 10 ns = 233µs. Thus, compared
to the slowest CFGLUT methods with 65.5 ns, the ICAP
reconfiguration is a factor of 3556 slower. The price for these
fast reconfiguration times and low memory requirements is
paid by a slice overhead of 88% and 95%, respectively.

VIII. CONCLUSION

We analyzed two reconfigurable FIR filter architectures
based on the CFGLUT primitives which can be mapped to
all modern FPGAs of Xilinx. The first one is based on a

recently proposed method based on distributed arithmetic [10],
the second one uses several instances of a reconfigurable LUT
multiplier [14] to build a reconfigurable multiplier block as
needed in the FIR filter. Similarities between the different
approaches were derived as both methods uses similar arith-
metic transformations to map large LUTs to several smaller
LUTs by the use of additional adders. It turned out that less
CFGLUTs, and, in most of the cases, less slices are needed for
the LUT based multiplier architecture in the case that the input
word size is greater than approximately half the number of
coefficients and vice versa. Both methods have reconfiguration
times and memory requirements which are about four orders
of magnitudes faster than using partial reconfiguration via
the ICAP interface which is paid by approximately twice the
amount of slices.
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LUT Multiplier improvement compared to DA:

Choosing the right architecture can save up to 40% slices
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RESULTS: 2ND EXPERIMENT

Method S [bit] Slices fclk [MHz] Trec [ns]

RPAG with ICAP 746496 502. . . 569 386.7. . . 448.8 233280

Reconf. FIR DA 1920 1071 521.9 61.3

Reconf. FIR LUT 14784 1108 487.8 65.6

Comparison with partial reconfiguration via ICAP

Ten different filters with N=41 were highly optimized using 
PMCM optimization RPAG [Kumm et al. ’12]

Configuration memory is reduced by a factor of 
1/388 (DA) and 1/50 (LUT Mult.) ☺ 
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RESULTS: 2ND EXPERIMENT

Method S [bit] Slices fclk [MHz] Trec [ns]

RPAG with ICAP 746496 502. . . 569 386.7. . . 448.8 233280

Reconf. FIR DA 1920 1071 521.9 61.3

Reconf. FIR LUT 14784 1108 487.8 65.6

Comparison with partial reconfiguration via ICAP

Ten different filters with N=41 were highly optimized using 
PMCM optimization RPAG [Kumm et al. ’12]

Slice requirements are roughtly doubled ☹  
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RESULTS: 2ND EXPERIMENT

Method S [bit] Slices fclk [MHz] Trec [ns]

RPAG with ICAP 746496 502. . . 569 386.7. . . 448.8 233280

Reconf. FIR DA 1920 1071 521.9 61.3

Reconf. FIR LUT 14784 1108 487.8 65.6

Comparison with partial reconfiguration via ICAP

Ten different filters with N=41 were highly optimized using 
PMCM optimization RPAG [Kumm et al. ’12]

Perfomance is similar  
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RESULTS: 2ND EXPERIMENT

Method S [bit] Slices fclk [MHz] Trec [ns]

RPAG with ICAP 746496 502. . . 569 386.7. . . 448.8 233280

Reconf. FIR DA 1920 1071 521.9 61.3

Reconf. FIR LUT 14784 1108 487.8 65.6

Comparison with partial reconfiguration via ICAP

Ten different filters with N=41 were highly optimized using 
PMCM optimization RPAG [Kumm et al. ’12]

Reconfiguration time is drastically reduced
by a factor of 1/3556! ☺
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Two different reconfigurable FIR filter architectures for 
arbitrary coefficient sets were analyzed

Both are implemented using reconfigurable LUTs (CFGLUTs)

The LUT multiplier architecture typically needs less slices 
when input word size is greater than approx. half the number 
of coefficients (and vice versa)

Both architectures offer reconfiguration times of about 3500 
times faster than partial reconfiguration using ICAP

This is paid by twice the number of slice resources



RECOSOC CONCLUSION
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If you have a reconfigurable 
FPGA circuit which allows a fixed routing:

Use reconfigurable LUTs!



THANK YOU!




