

Centralized Traffic Monitoring for online-resizable Clusters in Networks-on-Chip

<u>Philipp Gorski</u>, Dirk Timmermann Institute of Applied Microelectronics and Computer Engineering University of Rostock, Germany {<u>philipp.gorski2</u>, dirk.timmermann<u>}@uni-rostock.de</u>

Outline

- Introduction
 - Networks-on-Chip (NoC)
 - Why Traffic Monitoring?

Traffic Monitoring

- Basic Concept
- Dual NoC Infrastructure
- Hardware/Software-based Clustering
- Sensing and Flow
- Experimental Results
- Outlook & Future Work

Introduction – Networks-on-Chip

- Networks-on-Chip (NoC)
 - Packet-based and globally asynchronous communication on-chip
 - Replacement of bus-based interconnections \rightarrow Scalability & Parallelism
- Basic elements of the NoC:
 - Ipcore = Computational resource that communicates via the NoC
 - Network-Interface (NI) = Connection of Ipcore and NoC for reception/transmission of packets
 - Router (R) = Switching units that lead packets through the NoC from source to destination lpcore
 - Link = Bidirectional point-to-point connections between Routers
 - Topology = Connection Graph of Ipcores, Routers and Links
- Scalable on-chip communication for Chip Multiprocessor (CMP) Systems

Introduction – Networks-on-Chip

• XY-Routing, Wormhole Switching, REQ/ACK Flow Control, Input Buffering and Round Robin Arbitration

Introduction – Why Traffic Monitoring?

- Increasing parallelism in CMP (64, 128, 256, 512, ... Ipcores)
- Communication becomes dominant for performance and energy consumption
- Runtime-based management mechanisms need current traffic information
 - Application Mapping / Workload Management
 - Adaptive Routing / Traffic Management
 - Application Profiling / Debugging
 - Wear-out and Degradation Management
- To achieve cooperative interaction of these mechanisms a common information base is needed

Outline

- Introduction
 - Networks-on-Chip (NoC)
 - Why Traffic Monitoring?

Traffic Monitoring

- Basic Concept
- Dual NoC Infrastructure
- Hardware/Software-based Clustering
- Sensing and Flow
- Experimental Results
- Outlook & Future Work

Traffic Monitoring – Basic Concept

• Design criteria:

- Monitoring inside a Region of Interest
- Monitoring with a Resolution of Interest
- Reuse of Information/Infrastructure
- Flexible hardware/software solution
 - − Counter-based activity sensing/aggregation in hardware → Simple Events
 - Monitoring data evaluation and management in software
- Centralized collection of all link- and pathloads inside a defined Region
 - All loads scaled to 0-100% with resolution of 1, 2 or 4% in hardware (ready to use)
- Adjustable timing for each Region/Cluster
 - 1000 to 4000000 clock cycles for full data set

- ightarrow Isolated workload fractions
- → Timing & Accuracy
- \rightarrow Mapping, Routing, Profiling

Traffic Monitoring – Basic Concept

Research scope → More software-defined and cooperative runtime optimization

Traffic Monitoring – Dual NoC Infrastructure

CELLS

- **Data-NoC** for application data
- **System-NoC** for monitoring
- Minimal design and runtime interferences
- **IP-Cores now has two NIs** •
 - Data-NoC Interface (DNI)
 - System-NoC-Interface (SNI)
- Smallest management unit is the CELL/TILE
- Two types of CELLs
 - Master (CPU)
 - Slave
- **Full reuse!**

Traffic Monitoring – HW/SW-based Clustering

- Rectangular shaped group of CELLs
 - Lower Left Corner (LLC)
 - Upper Right Corner (URC)
 - At least one Master CELL
- No overlapping of Clusters
- One Master CELL per Cluster runs monitoring software
- Each CELL monitors own loads
 - Cluster paths
 - Router links
- Hardware extensions at each CELL needed
- Maximum size is N_{CLmax} [14, 64]

• Hierarchical aggregation structure of 3 interacting stages:

Stage 1 – Traffic Sensors: Activity sensing of links and paths at CELLs

- Counting of activity clock cycles as basic events
- N_{CLmax} Path Sensors uses ACK-signal of DNI for destinations inside region → REAL LOAD!
- 5 Link Sensors uses lock signals of arbiter device → REAL LOAD + CONGESTION!
- Counting of active clock cycles until overflow happens at counter

- Stage 2 - SNI-Extension: Periodic checking and reporting at CELLs

- Finite state machine periodically checks Traffic Sensors for overflows → Sensor Check Period
- Generates and transmits monitoring packet to Master if overflows happened

– Stage 3 – Event Aggregation Point: Master counts reported overflows

- Each Traffic Sensor has a corresponding overflow counter at the Event Aggregation Point (EAP)
- Event Aggregation Point only implemented at Master CELLs
- Periodic access of counter values via Core Interface (CI) → Monitoring Cycle

Stage 1 – Traffic Sensors

Stage 2 – SNI-Extension

Implementation:

- Check via Xoring all OFG
- Read & Reset all OFG
- Packet composition via FSM
- b_{T-MODE} set during Cluster Setup
- b_{T-MODE} equal at all Cluster CELLs

• Stage 3 – Event Aggregation Point

$$\begin{aligned} & load_{j}(t_{sp+1}) = \begin{cases} load_{j}(t_{sp}) + 1 & (OFG_{j}(t_{sp+1}) = 1) \land (rst = 0) \\ load_{j}(t_{sp}) & (OFG_{j}(t_{sp+1}) = 0) \land (rst = 0) \\ 0 & rst = 1 \end{cases}$$
 Unscaled Loads!

Implementation:

- 7-bit counter GROUPs
- (N_{CLmax} + 5) counter per GROUP
- N_{CLmax} GROUPs (for each CELL)
- N_{CLmax} = [16, 64] analysed
- Event Buffer stores incoming packets
- Vector order = Counter order
- Periodic read and reset by software
- Intermediate read by software
- Direct Access via Core Interface (CI)
- Scaling of loads via Access Timing!

- Load Scaling via Access Timing
 - Stepping $k_s = \{1, 2, 4\} \rightarrow \text{sload} = 0: k_s: 100 \text{ in }\% \text{ of max BW per Link/Path}$
 - N_{SP} = # of Sensor Periods t_{sp} = f(t_{clk} , b_{T-MODE}) per Monitoring Cycle
 - $T_{MC} = Monitoring Cycle$

$$N_{SP} = 100 / k_s$$

$$sload_j = \begin{cases} load_j & k_s = 1 \Rightarrow N_{SP} = 100 \\ load_j <<1 & k_s = 2 \Rightarrow N_{SP} = 50 \\ load_j <<2 & k_s = 4 \Rightarrow N_{SP} = 25 \end{cases}$$

Scaled Loads!

 $\Rightarrow N_{SP} = 100$

- min(b_{T-MODE})=f(Clustersize)
 - Traffic Monitoring \rightarrow Many-to-One Pattern
 - Condition: (Injected BW in Cluster < Receivable BW at Master)
 - 16 CELLs → min(b_{T-MODF}) = 128
 - 64 CELLs → min(b_{T-MODE}) = 1024
 - − If condition met \rightarrow sload ± e_{max} with $e_{max} \le 2 \cdot k_s!!!$

- Timing of Traffic Monitoring offers two options:
 - − Adjustment of b_{T-MODE} → At all Cluster CELLs
 - Adjustment of Stepping $k_s \rightarrow At$ Master CELL only
 - Tradeoff: Effort vs. Accuracy

	Monitoring Cycle T _{MS} [µs] for t _{clk} =1ns				
b _{T-MODE}	k _s =1	k _s =2	k _s =4		
64	6.4	3.2	1.6		
128	12.8	6.4	3.2		
256	25.6	12.8	6.4		
512	51.2	25.6	12.8		
1024	102.4	51.2	25.6		
2048	204.8	102.4	51.2		

- 45nm hardware synthesis via Synopsys Design Compiler
 - Estimation of hardware overhead
- SystemC-based cycle accurate NoC simulation
 - Measurement of absolute traffic monitoring error (max & avrg)

Parameter	Value		
NoC	SNoC	DNoC	
Linkwidth w _L	8-, 16-bit	64-bit	
Clock Rate t _{clk}	1ns		
Port Buffer Depth	1 flit	5 flit	
b _{T-MODE}	64 – 2048 (Simulation: 128, 1024)		
Cluster Size N _{CLmax}	16 and 64		
Cluster Shape	4×4, 8×2 and 16×4, 8×8		
Monitor Position	Lower Left Corner (LLC)		
Technology	45nm (Nangate FreePDK45)		

- Hardware Overhead of the Traffic Monitoring in 45nm
 - A_{normal} = Area(Router_{SNoC}, Links_{SNoC}, Traffic Sensors, SNI-Extension)
 - $A_{master} = Area(A_{normal}, EAP)$
 - A_{tile} = 3mm x 3mm (estimate 45nm Intel SCC)

Total Area Overhead per TILE @ 45nm for t _{clk} =1ns, N _x =8 and N _y =8								
N _{CLmax}	16 CELLs		64 CELLs					
SNoC Linkwidth	8-bit	16-bit	8-bit	16-bit				
A _{master} /A _{tile}	0.51%	0.66%	3.11%	3.26%				
A _{normal} /A _{tile}	0.29%	0.44%	0.37%	0.52%				

- EAP and Traffic Sensors dominate the hardware overhead
- But area estimates remain inside a feasible range!

- Full system simulation with mixed workloads
 - Random Uniform Traffic Pattern
 - Balanced loads and high overall utilization
 - Packetsize = rand(5,15) Flit
 - Destination = rand(0, $N_x \cdot N_y 1$)
 - Random Task Graphs with sequential mapping
 - 7 to 70 Tasks per Graph
 - 2 to 10 Graphs per Workload
 - Packetsize = rand(5,50) Flit
 - Each Workload simulated 10 times with 10 full Monitoring Cycles for each Cluster shape (4x4, 8x2, 8x8, 4x16) and stepping (1, 2, 4)
 - Logging of average and maximum errors for pathloads (PL) and linkloads (LL)

Max. error in 4x4 CELL Cluster @ Random : min(b_{T-MODE}) = 128

◆ PL-1 ■ LL-1 ▲ PL-2 × LL-2 × PL-4 ● LL-4

Max. Error all 16 CELL Cluster Scenarios: min(b_{T-MODE}) = 128

Max. Error all 64 CELL Cluster Scenarios: min(b_{T-MODE}) = 1024

Pseudoload 4x4 CELL Cluster Scenarios: min(b_{T-MODE}) = 128

Outline

- Introduction
 - Networks-on-Chip (NoC)
 - Why Traffic Monitoring?
- Traffic Monitoring
 - Basic Concept
 - Dual NoC Infrastructure
 - Hardware/Software-based Clustering
 - Sensing and Flow
 - Experimental Results
- Conclusion & Future Work

Conclusion & Future Work

- Flexible HW/SW traffic monitoring proposed
 - All path- and linkloads inside a resizable region at a single entity
 - Adjustable timing and accuracy
 - Hardware overhead and achievable Monitoring Cycles are feasible
- Next steps and investigations → Runtime Mechanisms
 - Workload/Application Profiling (Rent's Rule)
 - Communication Distributions/Probabilities
 - Execution Phase Detection
 - Combination with Performance Counter Data
 - Flow-based Traffic Management
 - Path adaptations inside Clusters

THANK YOU!

