
Institute for Communication Technologies and Embedded Systems

CoEx: Novel Profiling-Based
Algorithm/Architecture Co-Exploration

for ASIP Design

Juan Eusse, Christopher Williams, Rainer Leupers
Chair for Software for Systems on Silicon (SSS)

ReCoSoC 2013, Darmstadt July 10th, 2013

OUTLINE

2

 Why do we need ASIP oriented profiling? 1

 Multi-Grained application profiling 2

 CoEx implementation 3

 Evaluation: Execution Overhead 4

 Case Study: Planar-Marker detection for AR 5

© Juan Eusse – 2013 ReCoSoC 2013

 Conclusions and future work 6

1. Why do we need ASIP oriented profiling? (I)

3

Source: T.Noll, RWTH Aachen

HW Design

SW
Design

103 . . . 104

Digital
Signal

Processors

General
Purpose

Processors

Lo
g

 P
O

W
ER

D

IS
SI

PA
TI

O
N

10
5 .

. .
 1

06

Application
Specific

ICs

Physically
Optimized

ICs

Field
Programmable

Devices

Log PERFORMANCE

Lo
g

 F
LE

X
IB

IL
IT

Y

ASIPs

 In a world of changing standards, how to keep the right amount of
flexibility while being efficient?

© Juan Eusse – 2013 ReCoSoC 2013

4

(C/C++)

 Architecture Description Languages (e.g. LISA) -based tools can:
 Generate the SW environment (assembler, linker, simulator,

compiler)
 Generate HDL descriptions

 Profiling has remained the entry point to all ADL-based
methodologies

© Juan Eusse – 2013 ReCoSoC 2013

1. Why do we need ASIP oriented profiling? (II)

 Input specification comes as “high-level” C/C++ code
 Usually directly from the algorithm designer

 Profiling used only to detect application “hotspots”
 SLP tools are intended for GP program analysis
 Emulation-Based is more accurate but cannot be reused
 ISS/HW based requires the existence of a target processor

architecture

5 © Juan Eusse – 2013 ReCoSoC 2013

1. Why do we need ASIP oriented profiling? (III)

Presenter
Presentation Notes
* Application hotspots are usually concentrated among a few functions, but modifications inside those functions may affect the entire application functionality. * The algorithm designer is mainly concerned by the correctness of the algorithm itself, regardless of the efficiency of the execution when implemented in a given platform. It is a task of the ASIP designer to understand the algorithm and to devise a processor architecture that can execute the algorithm efficiently, while maintaining the algorithmic correctness but satisfying specification constraints.

 Main Goals:
 Profile at source level, using different granularities controlled by the

designer (profiling scenarios)
 Retain execution speed inherent to native execution
 Allow the greatest possible flexibility while keeping target

independence

 Generate information to ease algorithmic exploration and
architecture customization

6

3. Multi-Grained application profiling (I)

© Juan Eusse – 2013 ReCoSoC 2013

 !

 Available profiling configurations related to the ASIP design stage

7

3. Multi-Grained application profiling (II)

© Juan Eusse – 2013 ReCoSoC 2013

Stack/Heap size
collection/tracing

Variables value range
collection/tracing

Memory access
statistics/tracing

Callgraph generation

Function/BasicBlock
statistics/tracing

Dynamic memory
(de)allocation

recording/tracing

Algorithmic Exploration Architecture Customization

Profiling configuration

1. Hotspot detection

2. Common sub-case
optimizations

3. Memory usage
optimization

4. Numerical
transformations

1. Instruction set design

2. Data path construction
and sizing

3. Custom memory
architectures/hierarchies

4. Specialized HW
(branch predictors, ZOL,
AGUs)

 Standalone Multi-Grained
SLP based on LLVM code
instrumentation

 Granularity of the profiling

scenario is configured by
the designer

 Generated profiling

information is independent
of the target architecture

8

4. CoEx implementation (I)

© Juan Eusse – 2013 ReCoSoC 2013

9

4. CoEx implementation (II)

© Juan Eusse – 2013 ReCoSoC 2013

Pure LLVM IR
Configuration XML

+

Instrumented LLVM IR

10

4. CoEx implementation (III)

© Juan Eusse – 2013 ReCoSoC 2013

 Static File:
 Language dependent

information
 Dynamic File:
 Application execution

extracted information
 General Trace
 Functions, basic

blocks, memory
 Value Trace:
 Individual value traces Size and type of output depends on

the profiling scenario configuration

Static output file

Dynamic output file

General trace file

Value trace file

|merge_lines|6|cond|8
|merge_lines|11|cond|8
|merge_lines|16|cond|9
|merge_lines|21|cond|2
|merge_lines|26|cond|7
|merge_lines|31|cond|5
|merge_lines|36|cond|7
|merge_lines|41|cond|2
|merge_lines|46|cond|8
|merge_lines|51|cond|6

11

4. CoEx implementation (IV)

© Juan Eusse – 2013 ReCoSoC 2013

 Profiling results visualization:
 Intuitive navigation through the profiling results
 Linking/highlighting of the application source code

12

…

entry

for.cond

…

…

LLVM IR
Exec Ct:-

Branch Info
True: -
False:-

Exec Ct: 25
Branch Info

Unconditional

Exec Ct: 422
Branch Info
True: 80%
False:20%

Exec Ct: -
Branch Info

True:-
False:-

Exec Ct: -
Branch Info

True: -
False:-

Abstract Processor Model (APM)

Instruction Set Functional Units
(FUs)

Library calls cost
calibration

Performance
Estimate

BB Cost Exec.Count
Branch Penalties

List Scheduler

ADD
LD

NOP
NOP
MUL
CALL
NOP
NOP

ADD
MUL
NOP
NOP
ORI

LD
NOP
NOP
ADD

Instruction Latencies
FU characteristics

IR - Instruction mapping

LLVM IR
Instructions

Profiling Information

 Pre-architectural performance estimation

4. CoEx implementation (IV)

 Instrumentation Overhead:
 Generated profiling scenarios for AES, JPEG, ADPCM,

FFT(iFFT), Blowfish, Susan from DSPStone and EEMBC.
 Two non-optimized applications considered:
 Audio filter application
 Planar marker detection for augmented reality – case study

 Profiling scenarios tuned to match existing SLP analyses
 Native execution time is the baseline for overhead calculations

13

5. Evaluation: Execution Overhead (I)

© Juan Eusse – 2013 ReCoSoC 2013

Overhead compared with gprof,
gcov, callgrind (function call),
leak-check (dynamic memory),
massif (stack/heap), dhat
(memory accesses), bbv (basic
block tracing)

 Customization of the PD_RISC processor for an AR application
 Detect black-and-white 2-Dimensional markers in an image
 Input specification consists on ~2900 lines of C code
 Function pointers, recursion, SP floating-point, dynamic memory

management heavily used
 Algorithm steps:

1. Divide the image into 40x40px regions
2. Detect pixels with strong magnitude
 changes
3. Detect which belong to straight lines
4. Merge compatible lines (super-lines)
5. Extend super lines until corners
6. Keep lines that have corners
7. Build line chains
8. Detect markers

14

6. Case Study: Planar-Marker detection for AR (I)

© Juan Eusse – 2013 ReCoSoC 2013

 Profiling Scenario 1: Function/Basic Block/Timing analysis (no trace)
 Light-weight profiling (low execution overhead)
 Steps (3) and (4) of the algorithm consume 29% and 40% total

execution time

 10% in calls to malloc/free

15

6. Case Study: Planar-Marker detection for AR (II)

© Juan Eusse – 2013 ReCoSoC 2013

Memory
Address

Load-
Store

Intege
r

Ops.

Floating
Point
Ops.

Function Execution
Count

Line check 11 70 3 25 693600

2x1 Vector
Normalization

12 50 2 10 734044

2x1 Dot
Product

4 10 0 3 2264043

Square Root 0 17 2 5 1073440

2x1 Vector
Length

4 9 0 3 1099245

 Profiling Scenario 2: Function/Basic Block profiling (stack/heap trace)
 Observed initial/final frame memory (de)allocation
 Closer look revealed repetitive (de)allocation
 Trace examination enabled:
 Static memory and memory pool sizing

16

6. Case Study: Planar-Marker detection for AR (III)

© Juan Eusse – 2013 ReCoSoC 2013

 13% of overall
execution
speedup

 No architectural

customization

 Profiling Scenario 3: Hotspot input/output value trace
 Traced hotspots from profiling scenario 1
 Assumed a 32bit fixed point word
 Explored MSE for different quantization schemes (using Matlab)

17

6. Case Study: Planar-Marker detection for AR (IV)

© Juan Eusse – 2013 ReCoSoC 2013

 Replaced floats by
Q21.10 fixed point

 27% further speedup

 Still no architectural

customization

 Profiling Scenario 4: Function/Basic Block/Memory Access profiling
(Fn/BB traces enabled)
 Exploration of the generated information through the GUI
 Architecture customization only done using fusion-type instructions:
 Fixed point support for the ALU
 SIMD addition, substraction and multiplication
 Dot product for 2x1 vectors
 Reciprocal square root approximation

18

6. Case Study: Planar-Marker detection for AR (IV)

© Juan Eusse – 2013 ReCoSoC 2013

6x combined speedup
achieved in only two
days of design time

19

 Pre-architectural performance estimation of case study
results
 Estimation performed after each successive

algorithm/architecture iteration
 Accuracy metric based on CA simulation results from ISS

 Application/Architecture
Revision

ISS-CA
Cycles

Estimated
Cycles

Error
(%)

ISS Time
(sec)

Estimation
Time (sec)

Estimation/
Simulation

Ratio
Input specification +
PD RISC (Base)

3705186373 2970991784 -19.82 4147 1.23 3371

Static Memory +
PD RISC (Base)

3403357531 2688236170 -21.01 3762 1.21 3109

Fixed Point +
PD RISC (Base)

2658942738 2238013034 -15.83 2991 1.22 2471

Fixed Point +
PD RISC (Fixed +Vector)

1670310514 1365812907 -18.23 2948 1.25 2358

Fixed Point +
PD RISC (Square
Reciprocal approx.)

622717072 514052942 -17.45 2991 1.24 2412

4. Case Study: Planar-Marker detection for AR (V)

 We propose Multi-Grained Profiling, which combines granularity
levels according to the ASIP design stage to ease algorithmic
exploration, application optimization and architecture exploration.

 We have implemented an MGP-enabled profiling tool (CoEx) to test

the validity of the approach.

 Although the execution overhead regarding native execution is

considerable, the amount of generated information and the
possibility of re-using it for other analyses (i.e. performance
estimation) compensates such overhead.

 A GUI has been developed to help the designer in the analysis of

the generated profiling information.

20

7. Conclusions and future work (I)

© Juan Eusse – 2013 ReCoSoC 2013

 Pre-architectural performance estimation of early architectural
decisions has been also explored, obtaining fairly accurate results
without the need for application simulation on an ISS.

 In the case study we have shown that by using CoEx, a designer

can grasp the inner workings of an application specification ina
time efficient manner.

 Furthermore, we were able to customize the PD_RISC processor in

just two days design time to detect planar markers in 2D images,
obtaining 6x performance gains.

 Future work will explore more in depth performance estimation

based on abstract processor models, in order to get more accurate
results.

21

7. Conclusions and future work (II)

© Juan Eusse – 2013 ReCoSoC 2013

Questions?

Thank you!

22

	CoEx: Novel Profiling-Based Algorithm/Architecture Co-Exploration for ASIP Design
	OUTLINE
	1. Why do we need ASIP oriented profiling? (I)
	1. Why do we need ASIP oriented profiling? (II)
	1. Why do we need ASIP oriented profiling? (III)
	3. Multi-Grained application profiling (I)
	3. Multi-Grained application profiling (II)
	4. CoEx implementation (I)
	4. CoEx implementation (II)
	4. CoEx implementation (III)
	4. CoEx implementation (IV)
	4. CoEx implementation (IV)
	5. Evaluation: Execution Overhead (I)
	6. Case Study: Planar-Marker detection for AR (I)
	6. Case Study: Planar-Marker detection for AR (II)
	6. Case Study: Planar-Marker detection for AR (III)
	6. Case Study: Planar-Marker detection for AR (IV)
	6. Case Study: Planar-Marker detection for AR (IV)
	4. Case Study: Planar-Marker detection for AR (V)
	7. Conclusions and future work (I)
	7. Conclusions and future work (II)
	Slide Number 22

