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1. Why do we need ASIP oriented profiling? (I) 
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Source: T.Noll, RWTH Aachen 
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 In a world of changing standards, how to keep the right amount of 
flexibility while being efficient? 
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(C/C++) 

 Architecture Description Languages (e.g. LISA) -based tools can: 
 Generate the SW environment (assembler, linker, simulator, 

compiler) 
 Generate HDL descriptions 

 Profiling has remained the entry point to all ADL-based 
methodologies 
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1. Why do we need ASIP oriented profiling? (II) 



 Input specification comes as “high-level” C/C++ code 
 Usually directly from the algorithm designer 

 
 Profiling used only to detect application “hotspots” 
 SLP tools are intended for GP program analysis 
 Emulation-Based is more accurate but cannot be reused 
 ISS/HW based requires the existence of a target processor 

architecture 
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1. Why do we need ASIP oriented profiling? (III) 

Presenter
Presentation Notes
* Application hotspots are usually concentrated among a few functions, but modifications inside those functions may affect the entire application functionality. * The algorithm designer is mainly concerned by the correctness of the algorithm itself, regardless of the efficiency of the execution when implemented in a given platform. It is a task of the ASIP designer to understand the algorithm and to devise a processor architecture that can execute the algorithm efficiently, while maintaining the algorithmic correctness but satisfying specification constraints.



 Main Goals: 
 Profile at source level, using different granularities controlled by the 

designer (profiling scenarios) 
 Retain execution speed inherent to native execution 
 Allow the greatest possible flexibility while keeping target 

independence 
 

 Generate information to ease algorithmic exploration and 
architecture customization 
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3. Multi-Grained application profiling (I) 
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 Available profiling configurations related to the ASIP design stage 
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3. Multi-Grained application profiling (II) 
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Stack/Heap size 
collection/tracing 

Variables value range 
collection/tracing 

Memory access 
statistics/tracing 

Callgraph generation 

Function/BasicBlock 
statistics/tracing 

Dynamic memory 
(de)allocation 

recording/tracing  

Algorithmic Exploration Architecture Customization 

Profiling configuration 

1. Hotspot detection 

2. Common sub-case 
optimizations 

3. Memory usage 
optimization 

4. Numerical 
transformations 

1. Instruction set design 

2. Data path construction 
and sizing 

3. Custom memory 
architectures/hierarchies 

4. Specialized HW 
(branch predictors, ZOL, 
AGUs) 



 Standalone Multi-Grained 
SLP based on LLVM code 
instrumentation 
 
 Granularity of the profiling 

scenario is configured by 
the designer 
 
 Generated profiling 

information is independent 
of the target architecture 
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4. CoEx implementation (I) 
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4. CoEx implementation (II) 
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Pure LLVM IR 
Configuration XML 

+ 

Instrumented LLVM IR 
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4. CoEx implementation (III) 
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 Static File: 
 Language dependent 

information  
 Dynamic File: 
 Application execution 

extracted information 
 General Trace 
 Functions, basic 

blocks, memory 
 Value Trace: 
 Individual value traces Size and type of output depends on 

the profiling scenario configuration 

Static output file 

Dynamic output file 

General trace file 

Value trace file 

|merge_lines|6|cond|8 
|merge_lines|11|cond|8 
|merge_lines|16|cond|9 
|merge_lines|21|cond|2 
|merge_lines|26|cond|7 
|merge_lines|31|cond|5 
|merge_lines|36|cond|7 
|merge_lines|41|cond|2 
|merge_lines|46|cond|8 
|merge_lines|51|cond|6 
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4. CoEx implementation (IV) 
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 Profiling results visualization: 
 Intuitive navigation through the profiling results 
 Linking/highlighting of the application source code 
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 Pre-architectural performance estimation 
 

4. CoEx implementation (IV) 



 Instrumentation Overhead: 
 Generated profiling scenarios for AES, JPEG, ADPCM, 

FFT(iFFT), Blowfish, Susan from DSPStone and EEMBC. 
 Two non-optimized applications considered: 
 Audio filter application 
 Planar marker detection for augmented reality – case study 

 Profiling scenarios tuned to match existing SLP analyses 
 Native execution time is the baseline for overhead calculations 
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5. Evaluation: Execution Overhead (I) 
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Overhead compared with gprof, 
gcov, callgrind (function call), 
leak-check (dynamic memory), 
massif (stack/heap), dhat 
(memory accesses), bbv (basic  
block tracing) 



 Customization of the PD_RISC processor for an AR application 
 Detect black-and-white 2-Dimensional markers in an image 
 Input specification consists on ~2900 lines of C code 
 Function pointers, recursion, SP floating-point, dynamic memory 

management heavily used 
 Algorithm steps: 

1. Divide the image into 40x40px regions 
2. Detect pixels with strong magnitude 
    changes 
3. Detect which belong to straight lines 
4. Merge compatible lines (super-lines) 
5. Extend super lines until corners 
6. Keep lines that have corners 
7. Build line chains 
8. Detect markers 
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6. Case Study: Planar-Marker detection for AR (I) 
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 Profiling Scenario 1: Function/Basic Block/Timing analysis (no trace) 
 Light-weight profiling (low execution overhead) 
 Steps (3) and (4) of the algorithm consume 29% and 40% total 

execution time 
 
 
 
 
 
 
 
 
 
 10% in calls to malloc/free 
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6. Case Study: Planar-Marker detection for AR (II) 
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Memory  
Address 

Load-
Store 

Intege
r  

Ops. 

Floating 
Point 
Ops. 

Function Execution 
Count 

Line check  11 70 3 25 693600 

2x1 Vector 
Normalization 

12 50 2 10 734044 

2x1 Dot 
Product 

4 10 0 3 2264043 

Square Root 0 17 2 5 1073440 

2x1 Vector 
Length 

4 9 0 3 1099245 



 Profiling Scenario 2: Function/Basic Block profiling (stack/heap trace) 
 Observed initial/final frame memory (de)allocation 
 Closer look revealed repetitive (de)allocation 
 Trace examination enabled: 
 Static memory and memory pool sizing 
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6. Case Study: Planar-Marker detection for AR (III) 
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 13% of overall 
execution 
speedup  
 
 No architectural 

customization 



 Profiling Scenario 3: Hotspot input/output value trace 
 Traced hotspots from profiling scenario 1 
 Assumed a 32bit fixed point word 
 Explored MSE for different quantization schemes (using Matlab) 
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6. Case Study: Planar-Marker detection for AR (IV) 

©  Juan Eusse – 2013                                ReCoSoC 2013 

 Replaced floats by 
Q21.10 fixed point  
 
 27% further speedup 

 
 Still no architectural 

customization 



 Profiling Scenario 4: Function/Basic Block/Memory Access profiling 
(Fn/BB traces enabled) 
 Exploration of the generated information through the GUI 
 Architecture customization only done using fusion-type instructions: 
 Fixed point support for the ALU 
 SIMD addition, substraction and multiplication 
 Dot product for 2x1 vectors 
 Reciprocal square root approximation 
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6. Case Study: Planar-Marker detection for AR (IV) 
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6x combined speedup 
achieved in only two 
days of design time 
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 Pre-architectural performance estimation of case study 
results 
 Estimation performed after each successive 

algorithm/architecture iteration 
 Accuracy metric based on CA simulation results from ISS 

 Application/Architecture 
Revision 

ISS-CA 
Cycles 

Estimated 
Cycles 

Error 
(%) 

ISS Time  
(sec) 

Estimation 
Time (sec) 

Estimation/
Simulation 

Ratio 
Input specification + 
PD RISC (Base) 

3705186373 2970991784 -19.82 4147 1.23 3371 

Static Memory +  
PD RISC (Base) 

3403357531 2688236170 -21.01 3762 1.21 3109 

Fixed Point +  
PD RISC (Base) 

2658942738 2238013034 -15.83 2991 1.22 2471 

Fixed Point +  
PD RISC (Fixed +Vector) 

1670310514 1365812907 -18.23 2948 1.25 2358 

Fixed Point +  
PD RISC (Square 
Reciprocal approx.) 

622717072 514052942 -17.45 2991 1.24 2412 

4. Case Study: Planar-Marker detection for AR (V) 



 We propose Multi-Grained Profiling, which combines granularity 
levels according to the ASIP design stage to ease algorithmic 
exploration, application optimization and architecture exploration. 
 
 We have implemented an MGP-enabled profiling tool (CoEx) to test 

the validity of the approach. 
 
 Although the execution overhead regarding native execution is 

considerable, the amount of generated information and the 
possibility of re-using it for other analyses (i.e. performance 
estimation) compensates such overhead. 
 
 A GUI has been developed to help the designer in the analysis of 

the generated profiling information. 
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7. Conclusions and future work (I) 
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 Pre-architectural performance estimation of early architectural 
decisions has been also explored, obtaining fairly accurate results 
without the need for application simulation on an ISS. 
 
 In the case study we have shown that by using CoEx, a designer 

can grasp the inner workings of an application specification ina 
time efficient manner. 
 
 Furthermore, we were able to customize the PD_RISC processor in 

just two days design time to detect planar markers in 2D images, 
obtaining 6x performance gains. 
 
 Future work will explore more in depth performance estimation 

based on abstract processor models, in order to get more accurate 
results. 
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7. Conclusions and future work (II) 
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Questions? 
 

Thank you! 
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