Matthias Hiller, Georg Sigl and Michael Pehl

A New Model for Estimating Bit Error Probabilities of Ring-Oscillator PUFs

11/07/2013

8th International Workshop on Reconfigurable Communication-centric Systems-on-Chip
Outline

• Introduction to PUFs
• New Modeling Technique
• Empirical Results
• Conclusions
Introduction

Embedded security
Measurement, storage, processing, transmission of sensitive data

Secure key storage
Prerequisite for cryptography

Non-volatile memory
Secure, but expensive

Technology and cost constraints

Solution: Physical Unclonable Functions
Physical Unclonable Functions

- Measurement of internal physical properties
- Randomness
- Precise PUF models necessary for error correction
Ring Oscillators from Logic Gates

\[f = \frac{1}{\sum_{i=1}^{5} \Delta t_i} \]
Ring Oscillator PUF

Suh et al., 2007
Bit derivation

\[r = 1 \]

\[f_i = f_j \]

\[f_i, f_j \]

\[\bar{f}_i, \bar{f}_j \]

\[r = 0 \]
Randomness

Uniqueness

Reliability
State of the art

- Direct comparison of frequencies
- Problem: Precision scales linearly with the effort

e.g. Maiti et al. (HOST 2010), Armknecht et al. (S&P 2011)
Outline

• Introduction to PUFs

• New Modeling Technique

• Empirical Results

• Conclusions
Multivariate Distribution

\[\overline{f} = [\bar{f}_i; \bar{f}_j]^T \]

\[C = \begin{bmatrix} \sigma_i^2 & \sigma_i \rho_{i,j} \sigma_j \\ \sigma_i \rho_{i,j} \sigma_j & \sigma_j^2 \end{bmatrix} \]

\[pdf(f_i, f_j) = \frac{1}{2\pi \sqrt{\det(C)}} \exp \left(-\frac{(f - \overline{f})^T C^{-1} (f - \overline{f})}{2} \right) \]
Reliability Analysis

\[x = [1, -1] \begin{bmatrix} f_i \\ f_j \end{bmatrix} = m^T f \]

\[\beta = \frac{(x - \bar{x})}{\sigma_x} \]

\[\beta_w^2 = \frac{(\bar{f}_i - \bar{f}_j)^2}{m^T C m} = \frac{(\bar{f}_i - \bar{f}_j)^2}{\sigma_i^2 - 2\sigma_i \rho_{i,j} \sigma_j + \sigma_j^2} \]

\[P(r = 1) = P(\beta < \beta_w) = \int_{-\infty}^{\beta_w} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{\beta^2}{2} \right) d\beta \]
Outline

• Introduction to PUFs

• New Modeling Technique

• Empirical Results

• Conclusions
Empirical Data

- Large scale case study at Virginia Tech in 2009
- Xilinx Spartan 3
 - 193 FPGAs
 - 512 ROs per FPGA
 - 100 measurements per RO

http://rijndael.ece.vt.edu/puf
Frequency Distribution on FPGAs
Bit Error Probabilities with new Model

Measurable Area
Validation of the Model
Conclusions

• Starting point:
 – Unknown bit error probability distribution

• New Model:
 – Correlated random variables
 – Estimation of entire bit error probability distribution

• Generalization:
 – Differential evaluation of physical measures for other PUF types
 (Voltage, Time, Resistance, Capacitance, …)
Lessons learned

• PUF measurements can be correlated, probably even under constant environmental conditions

• Theoretically founded demonstration that differential structures are useful

• RO PUF is a very reliable PUF

• New model as one step towards certification
Questions?