Teaching The Principles Of System Design,
Platform Development And Hardware Acceleration

Tim Kranich, Thomas Schuster, Matthias Hanke, Mladen Berekovic

Institut fuer Datentechnik

Technische Universitaet Braunschweig
{kranich, schuster, hanke, berekovic}@ida.ing.tu-bs.de

Abstract—Development of embedded systems composed of
tightly coupled microelectronic devices and several stacks of
software layers adapted to it has evolved into a more platform
based design methodology. We offer a lecture in the field of ESL
design that provides a broad spectrum of theoretical background.
It is escorted by a laboratory where starting from a C source code
a platform with a hardware accelerator for JPEG compression
is designed. Small tutorials teaching basic skills of hardware
modelling with SystemC and TLM are offered. Hence, we
provide a course split into three teaching forms that imparts
knowledge about state-of-the-art platform design together with
the qualification of understanding industrial system modeling
standards and tools.

I. INTRODUCTION

Embedded system computers increasingly ease our everyday
life. Cell phones, vehicles, medical equipment or home enter-
tainment devices are unrecognizably steered by an increasing
number of electronic chips. Embedded systems and their
software have become the dominant driver for microelectronics
and systems engineering.

Platform-based system designs are common for the class of
devices mentioned above. Platforms offer advantages like short
time to market, high reusability and better reliability compared
to full-custom solutions. Thus the cost for consumer devices
with complex but standardised technologies is kept low [1].

Our course imparts knowledge about designing these
platform-based systems for students related to the field of
computer science. It illustrates common techniques and mech-
anisms not only for design but also for implementation and
verification. Hence, they are taught in every field a design is
involved with.

Section II explains our teaching philosophy, which splits
the corse up into three different presentation forms. The
developed laboratory framework is described in section III
with its detailed schedule in section IV. The student’s feedback
is summarized in section V, which is followed by a conclusion
in section VI

II. TEACHING PHILOSOPHY

Students attending this class are already advanced in their
study of computer science, information technology or elec-
trical engineering. We offer a course with a wide variety of

Ralf Goettsche
Intel GmbH Braunschweig
Germany
ralf.goettsche @intel.com

teaching in the field of system design and especially platform-
based design. Platforms are the most common way of devel-
oping modern systems. The content is taught in three different
ways: a lecture, dedicated tutorials and a laboratory (see
figure 1). This differentiation ensures an optimized transfer
for the theoretical and practical knowledge as described in the
following three subsections.

Laboratory

Platform design
with industrial tools

Tutorials

Basic programming skills
in SystemC and TLM

Lecture

General ideas and concepts of
system and platform design

Figure 1. Course Structure

A. Lecture

Our lecture focus on teaching general concepts for system
design and platforms. This is the theoretical part of our
offering. It covers the various aspects of electronic-system-
level (ESL) design like system-on-chip (SoC) design, bus
communication, application-specific instruction set processors
(ASIP), multi processor System-on-chip (MPSoC), networks-
on-chips (NoC), low-power system design, test, verification
and debug.

Every major topic comes along with references of state-of-
the-art literature and implementation examples. These exam-
ples, either good or bad realizations, help developing a better
and deeper understanding of the theoretical teaching content.

B. Tutorials

Our tutorials help to clarify the concept of the modeling
language SystemC [3], [4], [5]. SystemC is one of most



common industrial modeling language and also the intro-
duced tool Platform Creator from Coware is based on it. We
experienced that getting to know how SystemC works also
helps understanding how complex modelling systems like the
Platform Creator are build. And this again allows developing
new components for the Platform Creator like it is done during
our laboratory.

Eight well chosen tutorials guide our students through the
basics. The complexity of the programming tutorials increases
with each new tasks. It starts with developing a 8bit counter
equivalent to a HDL implementation. More advanced topics
are test bench and stimulus generators. When the students
get adapted to the new model language, we proceed with
transaction-level-modeling (TLM). These exercises are con-
centrating on how communication between sources and sinks
can be abstracted by invoking SystemC channels like FIFOs
or buses.

C. Laboratory

The laboratory is organized in teamwork like real design
teams. The idea is to enable the group of students to develop
their own functional platform with the help of the Coware
Platform Creator, an industrial design tool [2]. The point of
origin is a generic C implementation of a JPEG compression.
Integral elements of the final platform are an ARM processor,
a memory mapped system bus, a system memory and a self-
written hardware accelerator. The compression algorithm is
tweaked so that it is executed on the ARM core together with
the developed accelerator.

The students collect industrial-like experiences in many
fields of system and platform design. For example the Platform
Creator imparts their tooling skills with a modern design
tool with industrial relevance. Additionally the Coware’s tool
environment allows developing the platform in a shorter time
than a development from scratch.

III. LABORATORY FRAMEWORK

In the laboratory, our students are challenged to design and
evaluate a platform for a special purpose with the industrial
tool Platform Creator from Coware. In our special case we
are focusing on accelerating a JPEG compression algorithm
with a dedicated DCT Unit (see Figure 2). In order to achieve
this goal the laboratory is divided into four working phases:
tool-handling, platform design, software adaptation and JPEG
acceleration.

A. Tool-Handling

When students join our laboratory they have no knowledge
about the tool Platform Creator. Therefore at the beginning
we offer exercises focusing on different aspects of the tool. At
the beginning a sample platform is generated. This minimized
system is utilized to explore the process of compiling and
running an application. Since we develop the hardware as well
as the software, debugging is required for both sides. It is
important to mention that the tool handling is the main focus
of the exercises and not developing the system.

(" ™\
LabPlatform
AN
ARM 9 Core —1 RAM
(%)}
I
o
5 = ROM
®
>
[Vp]
o
O
o -
N/
(- J

Figure 2. Platform for JPEG Compression with DCT Acceleration

B. Platform Design

Platform Creator enables developing the platform on the
system level in a very elegant way. It offeres a wide range
of predefined IP blocks like an ARM core or bus structures.
During the first design phase the hardware accelerator is
suppressed. The ARM core is connected via an OCP system
bus to two memories. In order to guarantee that the platform
is actually working a simple test program is cross-compiled
and downloaded to the microcontroller.

C. Software Mapping

We provide a pure C implementation for our students which
is not meant to run on the platform built in the previous phase.
Their task is to adopt the source code to the new environment.
Major distinction is the fact, that no file system is present on
the target platform. Hence, an important step is to model all
I/O accesses as memory requests. This includes that the input
data have to be prepared for the software modification. The
students are asked to realize their own approaches.

The Platform Creator allows to debug the hardware system
as well as the downloaded software. A SystemC Debug
interface and a GDB server accompany themselves, which
gives the designer/programmer full control and transparency
of its actions.

D. JPEG Acceleration

The last step in the laboratory is to accelerate the DCT for
a JPEG compression. Here the students develop a strategy of
how to communicate with the accelerator, modify the software
code and design the actual accelerator.

For this task, the attendees extend the IP pool from Platform
Creator. The tool supports two implementation styles. A C-
style and a HDL-style. In both cases the functionality of the
the IP block is encapsulated from the communication with the
other components on the platform. The benefits are obviously.
The students can start with the algorithms’ partitioning without
caring about the HDL implementation of the hardware accel-
erator. When the system executes successfully, the C model is
replaced by a cycle accurate HDL implementation.



Duration Section

Details

4 Sessions Tool Handling

QuickStart: First Platform
- Assamble a sample system
- Instanciate a OCP bus

SystemC Explorer
- Using the build-in hardware debugging tool

SystemC Shell
- Commandline tool for SystemC simulation

Component Wizzard
- Introduction to the library approach
- Creation of user-defined components

1 Session Platform Design

Designing a platform for an ARM9 core
- Understanding the design constraints
- Composing the initial acceleration platform

3 Sessions Software Mapping

Programming the Core
- Writing test program
- In-system debugging with GDB

Algorithm Adoption
- Introduction to JPEG compression
- Source code modification

5 Sessions JPEG Acceleration

Modification of Hardware and Software

- Encapsulating the DCT from the software

- Extending the bus system

- Designing SystemC acceleration component
- Implementing software call-routins

Hardware Acceleration
- Design hardware block for DCT
- Integrate hardware block in the acceleration platform

Figure 3.

IV. LABORATORY SCHEDULE

The laboratory is organized in weekly sessions respectively
three hours. During each session the students are supervised
and have the opportunity to ask questions. But they have also
access to the laboratory beyond the guided sessions in order to
complete their coding and debugging. At the beginning of each
session tasks and goals are defined. This mechanism helps us
to keep every group on track and shows the students if they
work in time and if they achieve the expected progress.

We organized all sessions in four sections. The topic of
these sections are tool handling, platform design, software
development and JPEG acceleration. The schedule for each
topic is given in figure 3.

The first section covers tool handling. This section tends
to be very steered by the supervisor because we try to get
our students as fast as possible productive with the new
development environment. We figured out that the tool is too
complex to let students explore its capabilities themselves. The
required time is simply too large. But it is also imported to

Laboratory Schedule

collect first user experiences. Thus we decided to create small
challenges for this first section. They are not directly reusable
for the actual accelerator platform design but demonstrate tool
specific development techniques and strategies.

In the beginning we ask our students generate a first and
very simple platform. It’s a timer connected to a reset logic
with a testbench unit. They shall understand the working
directory structure and the method for design entry. The com-
munication via busses and its memory map is introduced by
adding a OCP bus connecting the timer with the testbench unit.
Coware provides two tools for simulation and debugging. The
SystemC Explorer is a GUI for platform debugging. It provides
many visual representation like value traces, TLM port traces
and process traces for checking the platform’s execution. The
build-in SystemC simulator can also be accessed via a GUI but
Coware also allows to control the simulation via a SystemC
shell (scsh). Our students learn to employ these tools on their
simple platform.

Equipped with these skills the independent working effort



increases drastically. They shall composed an minimal plat-
form for an ARM9 core. We provide an ARM specification
that contains information about how the outer system has
to look like concerning the address mapping and memory
organization. In order to get the software properly working
this specification needs to be fully adopted.

The software mapping is subdivided into two parts. First,
our students are asked to program the ARM core with a pice of
self-written C code. This program should be short and simple.
It mainly serves as test for the cross compilation and software
debugging on the virtual platform. Second, we introduce JPEG
compression to compensate potential knowledge gabs in the
field of image processing. The detailed understanding of JPEG
is essential for the next step. We provide a C implementation
of a functional reduced JPEG compression. The source code
is meant to run on a normal PC with a terminal and a complex
file system. The students need to identify parts in the source
code that rely on these aspects and have to find alternatives
that are feasible on the virtual platform.

The final section of the laboratory is JPEG acceleration.
We chose the DCT for to be released because it is highly
parallel and well portioned in the provided source code. Thus
our students do not face too many problems with encapsulating
the DCT from the remaining compression algorithm. The bus
has to be extended for the new component and the SystemC
component itself has to be designed and instantiated. For the
first version the provided c-code is reused at the acceleration
component. For the final version the software code shall
be replaced by synthesisable VHDL code. The compression
algorithm on the ARM core requires call-routines for read
and write access to and from the accelerator in order to get
working as intended.

V. FEEDBACK FROM STUDENTS

The prevailing feedback is very positive. The project com-
plexity and freedom to implement their own solution motivates
our students. At the beginning we often have to discuss the
necessarily of the detailed tool introduction. Our students
tend to underestimate the effort of getting productive with an
mature development framework. But our first year experience
tells us that this time consuming introduction is necessary if
our students shall be able to get all the work done during the
mandatory time for the laboratory.

From time to time students do not see the necessity to have
extra tutorials where basics of SystemC are touched. From our
point of view this fundamental knowledge is important for an
universal education. Without this manual coding experiences it
is hard to estimate work effort on a higher level of abstraction.

VI. CONCLUSION

With this separation in three different teaching forms we are
able to provide a high quality background during our lecture
session paired with challenging implementation and evaluation
tasks in our tutorials and laboratory at the same time. The
attendees get to know implementation techniques for modern
ESL design in theory and are asked to develop an own platform

in our laboratory. The fundamentals of TLM with SystemC are
detached from the complex platform development to ensure a
deeper comprehension in both fields.

ACKNOWLEDGMENT

The authors would like to thank Intel Braunschweig who
are sponsoring the professorship for our VLSI education. We
also would like to thanks partners Coware and Europractice
who have provided tools and licenses for this course.

REFERENCES

[1] D. Densmore, A.Sangiovanni-Vincentelli, R. Passerone, A platform-based
taxonomy for ESL design, IEEE Des. & Test Comput., Vol. 23, No 5,
2006, pp. 359-374.

[2] http://www.coware.com

[3] http://www.systemc.org

[4] D. C. Black, J. Donovan, ”SystemC: From the Ground Up”, Springer,
2005

[5] T. Groetker, S. Liao, G. Martin, S. Swan, ”System Design with SystemC”,
Springer, 2001



