A Platform for VHDL Visualization

Zheng Lu*, Abdulhadi Shoufan*, Giudo Ré8ling?
*Intergrated Circuits and Systems Labs, TU-Darmstadt, Germany
Email: {zheng,shoufan}@iss.tu-darmstadt.de
T Dept. of Computer Science, TU-Darmstadt, Germany
Email: roessling@acm.org

Abstract—This paper presents a new platform for VHDL
visualization to support undergraduates in learning this hard-
ware description language. The presented platform, denoted as
VISUAL-VHDL, enables students to enter their own VHDL code
and control an animation process, which shows step-by-step how
the different language constructs are treated to synthesize a
complete digital circuit. Furthermore, VISUAL-VHDL enables
the visualization of the Quine-McCluskey algorithm, which is
embedded in our tools to optimize the circuit resulting from
synthesizing the VHDL code.

I. INTRODUCTION

VHDL is a well-established language for hardware descrip-
tion in industry and research and has gained considerable
attention in education [1]-[3]. An efficient learning of VHDL
relies on understanding it as a hardware description language
and on a clear differentiation between this language and
traditional programming languages such as C.

In particular, writing a software program mainly consists
of understanding the problem, translating the specification
into the language syntax, and testing the written program.
Questions relating to resource allocation, mapping of tasks to
resources, or scheduling are out of interest, as a rule. This
is attributed to the fact that most computer systems today
still include only one central processing unit —although two
or more cores are common in current computers— which
makes the problems of resource allocation and task mapping
irrelevant during software programming. Due to the sequential
operation of these CPUs, furthermore, the scheduling task is
also trivial.

Using VHDL to model digital systems, in contrast, is
highly different. Besides understanding the system specifica-
tion, knowing the language syntax, and the need to test models
by simulation, VHDL designers are responsible for solving all
the above problems of allocation, mapping, and scheduling,
along the way—or perhaps essentially. Understanding VHDL
relies on the awareness that writing any VHDL statement
may be associated with allocating a new hardware resource,
mapping some task of the system specification to this resource,
and scheduling the execution of this task at a specific time
point or in a specific clock cycle.

To make students familiar with its basic concepts, we cre-
ated a visualization and animation platform for VHDL. With
the aid of these tools, denoted as VISUAL-VHDL, students
can enter small VHDL codes and control an animation process
to see how this code is processed to set up the corresponding

TABLE I
COMMERCIAL SCHEMATIC VIEWERS VS. VISUAL-VHDL

Commercial Schematic Viewers [VISUAL-VHDL

Schematic is generated after com-
pleting the synthesis process which
often takes a considerable amount
of time.

Schematic is generated on the fly.

Schematic is output all at once.
Understanding which VHDL state-
ments were mapped to which
schematic elements often demands
an accurate investigation of the
schematic and the VHDL code.

Schematic is generated dynami-
cally in an interactive mode. Dur-
ing this animation, relating VHDL
statements and schematic elements
are highlighted using colors.

Investigation of relation between
the VHDL code and the schematic
often demands a switching be-
tween the windows of the VHDL
editor and the schematic viewer.

Both the VHDL code and the
schematic are displayed on one
window which considerably facil-
itates analysis.

Code optimization may hinder the
understanding of the mapping pro-
cess of the VHDL code to hard-
ware elements.

Code optimization is done on de-
mand. User can switch on or off
the optimization option.

Code optimization is performed in
the background.

Code optimization can be visual-
ized in an auxiliary window.

digital circuit compounded of basic logical elements such as
gates, flip-flops and multiplexers.

VISUAL-VHDL differs from schematic viewers embedded
in most commercial synthesis programs in several points,
which spring from the educational merit of VISUAL-VHDL,
as shown in Table I.

Animation platforms for data structures and algorithms in
terms of pseudo code or software programs have long been
used for educational purposes and evaluated for effectiveness
[4], [5]. To our knowledge, neither VHDL nor other hardware
description languages were addressed in the scope of such
visualization environments, so far. VISUAL-VHDL is a first
step in this direction.

The remainder of the paper is structured as follows. Sec-
tion II provides a brief introduction into ANIMAL, which
our platform is based on. Section III details VISUAL-VHDL.
Section IV concludes the paper with a summary and an
outlook.

II. ANIMAL

VISUAL-VHDL is a plug-in for ANIMAL, which in turn
is a Java-based environment for algorithm visualization [6].
The animation is created by applying appropriate effects to
pre-defined graphical primitives such as points, polylines,

€ ANIMA RIP

cedl1’’ (25,100) (25,110) (55,110)
“‘p0°’ (35,0) (35,20) (85,20)
hidden
via ‘‘p0’’

1 trian le
2 polyline

(85,90)
TR

3 move within 3000 ms

polygons, arcs and texts. For each primitive, several specific
properties such as the size and the color may be defined. The
animation effects include display, timed display, hiding, color
change, movement and rotation. Animations are displayed with
video player-like functionality including play, pause and a
direct jump to a given step. ANIMAL takes as input a special
ASCII-based script denoted as ANIMALSCRIPT, which defines
the animation content in a flexible way [7]. Each line in
ANIMALSCRIPT can represent a command compounded of
a keyword and a number of parameters. Listing 1 depicts a
section of an ANIMALSCRIPT file. In this section, a triangle
is first displayed. Then a hidden polyline is specified. The
triangle is finally moved along the polyline during 3 seconds.

III. VISUAL-VHDL

VISUAL-VHDL extends both the graphical library of AN-
IMAL and ANIMALSCRIPT. Figure 1 shows the general flow
for generating an appropriate animation for a given VHDL
code. During its analysis, the VHDL code can optionally be
optimized on the Boolean level based on the Quine-McCluskey
algorithm [8]. If desired, this optimization process can also be
visualized step-by-step.

The next task is to generate an extended netlist, which is
a structural description of the digital circuit enhanced with
visualization and animation information. This information is
generated in the style of ANIMALSCRIPT, so that it can be
treated by ANIMAL. The circuit primitives of the extended
netlist are selected from a graphical library, which was ex-
tended with new classes to support digital logic schematic.
Besides the automatic approach, VISUAL-VHDL allows the
generation of an extended netlist from a schematic editor.

The core functionality of VISUAL-VHDL consists in in-
terpreting the extended netlist and constructing an animation

VHDL Code

Code Analysis and
Optimization

Generate
Extended Netlist

Effects

Extended Netlist

Extended
Graphical Library

Generate Animations

Generation of an Animation for VHDL Models

Drag&Drop
Schematic Editor

Fig. 1.

T =
0 200 00 500 a0 1000 7% .
EXAMPLE LIBRARY [EEE;
USE [EEE STD_LOGIC_1164 ALL;
& ENTITY EXAMPLE IS
PORT (ab.cclkrst INSTD_LOGIC; co: OUT STD_LOGIC);
- — |- END ENTITY EXAMPLE;
st ARCHITECTURE BEH OF EXAMPLE IS
1) SIGNAL $1,52,53: STD_LOGIC;
BEGIN
s1<=aandb;
s2<=not c;
1 s3<=51 0r 52
PROCESS (clirst)
BEGIN
-1 P2 IF(rst="1") THEN
co<='0"
ELSIF(clk'event and clk='1") THEN
c0<=63;
ENDIF;
END PROCESS;
END ARCHITECTURE BEH;
— cosk Hods Monual St Contra =
“« »
T T R R T T 1 3 A 3 3
Fig. 2. Example for VHDL Animation, Processing the Assignment of the

Signal S2

that can be viewed inside ANIMAL, utilizing the Java Swing li-
brary. This animation program can then be executed under user
interaction to generate the circuit schematic corresponding to
the analyzed VHDL code step by step. The user interaction is
performed within the animation window with video player-like
controls.

Figure 2 presents a screenshot of the animation window in
an early step of the visualization process. Note how VISUAL-
VHDL highlights the code row (s2 <= not c¢), which relates
to the currently visualized digital inverter. In the final step, the
animation window appears as shown in Figure 3.

The extended graphical library is based on the graphical
library of ANIMAL and supplements it with new primitives to
display logical gates, flip-flops, multiplexers, entities etc. The
new special class Wire in VISUAL-VHDL is used to connect
the terminals of different primitives.

In the following, we describe some important aspects of
VISUAL-VHDL in more detail.

A. Code Analysis and Optimization

In its current prototype, VISUAL-VHDL supports the fol-
lowing VHDL language constructs: entities, ports, signals,

= =]
0 200 400 600 800 1000' g 0 100 200 300 400 500! nx
f— LIBRARY EEE,
USE [EEE STD_LOGIC_1164.ALL;
Py =1 ENTITY EXAMPLE IS F
PORT (a,b.c clkst IN STD_LOGIC; co: OUT STD_LOGIC),
— — I END ENTITY EXAMPLE;
L Lo e
o = ARCHTECTURE BEH OF EXAMPLE IS
4 2 e en EEGN@L”SZ‘“ STD_LOGIC, u
few Tt steso andb:
s2<=notc;
1 s3<=51 0rs2;
PROCESS (clkrst)
BEGIN
-1 2 IF(rst="1") THEN
co<=0";
ELSIF(clKevent and clk="1') THEN
co<=s3
ENDIF;
END PROCESS;
END ARCHITECTURE BEH,
Navigation Kiosk Mode Manual Step Control -
[Ww [[m][> m «lp]|l |n
o 2 0 60 % 100

Fig. 3. Example for VHDL Animation (Last Animation Step)

/////

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164 ALL;
ENTITY EXAMPLE IS
PORT (a,b,c,d,clk,rst IN STD_LOGIC;
co: OUT STD_LOGIC);
END ENTITY EXAMPLE;

ARCHITECTURE BEH OF EXAMPLE 1S
SIGNAL 51,52,53: STD_LOGIC;
BEGIN

sl==aandb;
s2==not{(c and d) or (c and not d));
§3<=810rs2;
PROCESS (clkrst)
.y BEGIN
IF{rst="1) THEN

co=="0"
t & ELSIF(clk'event and clk="1) THEN
- c0==53,

= ENDIF;
END PROCESS;
END ARCHITECTURE BEH;

Ea—

= “ M »

Fig. 4. Example for VHDL Animation (without Optimization)

architectures, processes, concurrent and sequential signal as-
signments, variables and variable assignments, conditional
assignments, component declarations and instantiations.

From a design perspective, VISUAL-VHDL allows the
visualization of VHDL models which presents behavioral,
structural, and mixed models, i.e., models with both behavioral
statements and component instantiation. Regarding behavioral
models, both combinatorial and sequential logic are supported,
so that a description on the register transfer level (RTL) is
allowed. Description on the RTL level is the most well-known
approach to specify hardware in commercial design flows.
On this level, the designer takes the responsibility for bit-
accurate resource allocation, task mapping, and cycle-accurate
scheduling. Thus, with the aid of VISUAL-VHDL, students
do not only learn VHDL and digital logic, but the de facto
standard design approach on the RTL level.

Upon parsing and analyzing the VHDL model, VISUAL-
VHDL offers an optimization of this model. VISUAL-VHDL
currently uses the Quine-McCluskey algorithm [8] to find the
minimal form of the Boolean function represented by the
VHDL model. Students can switch the optimization process
on and off to learn the effect of optimization on the synthesis
result. Figure 4, for instance, visualizes the synthesis result of
a given VHDL code without optimization. Investigating the
code shows that the signal s2 can simply be determined by
inverting the signal c as c.d+cd = c. Thus, if the same code is
visualized with optimization, the synthesis result would appear
as given in Figure 3.

The Quine-McCluskey algorithm relies on finding prime
implicants, which is an NP-hard problem. This algorithm is
taught in many courses on logic design. Besides its usage dur-
ing synthesizing the VHDL code, VISUAL-VHDL provides
the possibility to visualize the proceeding of this algorithm.
By this means, students learn about processes running in the
background of the synthesis task.

B. Extended netlist

The extended netlist includes all the information needed for
the dynamic visualization of the digital circuit. An extended
netlist extends ANIMALSCRIPT with several primitives to

1 {color “‘orl’’ type °‘fillColor ’’ none

2 d “‘d1’’ (421,117) (571,267) input ‘‘s3’°
output * ‘co’’ clock ‘‘clk’’ reset ‘‘rst’’
color black fillColor (153,153,255)
depth 50

3 unhighlightCode on ‘‘codeSource’’ line 16

4 highlightCode on ‘‘codeSource’’ line 17

5}

6 {wire wire_orl —0-—>d1—-0 (404,192) (404,178)
(421,178)

7}

visualize circuit symbols. During the animation process, an
extended netlist is processed sequentially from top to bottom.
Listing 2 shows the section of the extended netlist responsible
for visualizing the flip-flop and its connection with the OR-
gate according to Figure 3. In particular, this script section
contains two animation steps parenthesized with curly bracket
{}:

1) The first step performs the following four actions simul-
taneously. (1) The fillcolor of the OR-gate is removed.
(2) A D-flipflop is visualized, with upper-left and lower-
right corners at the position (421,117) and (571,267),
respectively. Note that the y-axis in VISUAL-VHDL
is directed downwards. The names of the inputs and
outputs of the flip-flop are specified. The attribute color
specifies the color of the flip-flop frame and the signal
names. The flip-flop is finally highlighted by a fillcolor.
(3) Line 16 in the VHDL code, which was highlighted in
the previous animation step, is unhighlighted. (4) Line
17 (c0 <= s3) is highlighted.

2) In the second step, a wire from the output of the OR-
gate to the input of the D-flipflop is visualized. Note
that this wire is specified by three points, as depicted in
Figure 5 schematically. See Figure 3 for comparison.

The automatic generation of an extended netlist for a given

VHDL code is a highly complex task, which includes the
following subtasks:

1) Determining the optimal placement of the logical ele-
ments.

2) Determining the optimal routing.

3) Determining the optimal animation.

The execution of the first two subtasks results among others

in the (z, y) position data for all the elements and wires of the
circuit. These data are supplied as parameters in the extended

(404,178) (421,178)
/71 2 X
> D
N|
(404,192) y

Fig. 5. Illustrating the Wire Dimensioning in the Extended

netlist, see Listing 2.

As mentioned in Section III, an extended netlist is generated
at the end of the analysis and optimization phase. For this
purpose, each element is specified by an attribute, which
gives the number of the VHDL code line relating to that
element. This attribute is required during the construction
of the extended netlist to highlight the VHDL lines and the
corresponding circuit elements synchronously.

For an appropriate display of the digital circuit, the anima-
tion field of the animation window is organized as a grid of
numbered cells and channels. Logical elements are placed into
cells, while wires are laid within the channels.

The grid size in terms of cell number and size is automat-
ically adjusted according to the netlist content. Some rules
are defined for simplifying the placement process. One rule
relates to the placement of the circuit elements having external
interface. Elements with external input signals, for instance,
are placed in the leftmost grid column as far as possible. In
contrast, elements with external output signals are placed in
the rightmost grid column.

Visualizing wires in VISUAL-VHDL is a sophisticated task
for the following reasons:

1) Wires should be as short as possible.

2) Wire segments can be only horizontal or vertical, not

diagonal.

3) Suitable inflection points should be found.

4) Intersections should be minimal.

5) Wires should expand from the output of an element to
the input of another. The expansion velocity should be
adjustable.

To provide this flexibility, our Wire object is realized as a set
of points. To visualize a wire consisting of several segments,
the start points of each segment and the end point of the last
segment are provided as parameters, see Figure 5.

C. Schematic Editor

The schematic editor as shown in Figure 6 is an extension of
the graphic editor of ANIMAL. The new digital toolbar at the
right includes symbols for 15 element types including gates,
flip-flops, multiplexers and demultiplexers. Upon dragging and
dropping a symbol, several parameters can be set, such as the
name and the color. The number and the names of inputs can
be entered for each gate. For a multiplexer, for instance, the
user may set the number of the data inputs. The number of the
control signals is then determined internally to avoid errors.
A D-flipflop can optionally be provided with set, reset and/or
clock-enable signals.

In addition to plotting, the schematic editor enables the
simulation of simple combinatorial circuits. For this purpose,
students can define the digital value for each input of the
plotted elements. The simulation core determines the output
values and visualizes them automatically.

IV. CONCLUSION

VISUAL-VHDL is a visualization platform for VHDL. It
enables entering VHDL code and an interactive production of
circuit schematic. By this means, students can learn the effect

[G]6 =)@t]|p B[%[> <] >
[Tt
o A i
B MuxOptions) | RE Y

i ot setings 1=
Ll = #input : 4 ~| Edit

il 2 output name : out

O (6] Color Settings
e nt-o

ol Color:|Miblack
[wd-Mux o ot 53,153,050
[e— out vl filled

i #in

Depth
Depthp
Object name

Name:

OK | Apply | Cancel

input & control edit

input 0: name in0

input 1: name in1 value
input 2: name in2 value 1

ino=1 mput 3: name in3

selection 0: name |s0

=0

— selection 1: name|s1
int=0

Fig. 6. VISUAL-VHDL Schematic Editor

of the versatile language constructs on the resource allocation,
task mapping and scheduling in the target system. Educators
may also take advantage of this tool to verify their models
or to quickly generate circuit schematics using the drag&drop
toolbar of the schematic editor.

VISUAL-VHDL is the first step toward a sophisticated
system to support the learning process in many subjects of
computer and electrical engineering. Currently we are devel-
oping a web interface for VISUAL-VHDL. Besides facilitating
the usage of our tools the web interface includes a feedback
system enabling students to evaluate these tools, so that we can
prove their effectiveness in the near future. Furthermore, our
platform will be completed and developed to support further
features of VHDL and its event-driven simulation process.
Other hardware description languages, such as Verilog, will
also be considered.

REFERENCES

[1] A. Sagahyroon, “From AHPL to VHDL: A course in hardware description
languages,” IEEE Transactions on Education, vol. 43, no. 4, pp. 449-454,
2000.

[2] I. Ainhoa Etxebarria and M. Sanchez, “An Educational Environment For
VHDL Hardware Description Language Using The WWW And Specific
Workbench.” Frontiers in Education Conference, pp. 2C 2-7, 2001.

[3] E. Gutiérrez, M. Trenas, J. Ramos, F. Corbera, and S. Romero, “A
new Moodle module supporting automatic verification of VHDL-based
assignments,” Computers & Education, vol. 54, no. 2, pp. 562-577, 2009.

[4] C. Hundhausen, S. Douglas, and J. Stasko, “A meta-study of algorithm
visualization effectiveness,” Journal of Visual Languages and Computing,
vol. 13, no. 3, pp. 259-290, 2002.

[5] M. Kraemer, “Balanced Cognitive Load Significantly Improves The
Effectiveness Of Algorithm Animation As A Problem-solving Tool,”
Journal of Visual Languages & Computing, vol. 19, no. 5, 2008.

[6] G. RoBling, Animal-Farm: An Extensible Framework for Algorithm
Visualization. VDM Verlag Dr. Miiller, 2008.

[71 G. RoBling and P. Schroeder, “Animalipse - An Eclipse Plugin for
ANIMALSCRIPT,” in Proceedings of the Fifth Program Visualization
Workshop, Madrid, Spain, G. Ro8ling and J. A. Veldzquez-Iturbide, Eds.,
2008, pp. 95-102.

[8] G. Vastianos, “Boolean functions’ minimisation software based on the
Quine-McCluskey method,” 2008, software Notes, (Draft Version).

