Design of Energy-Aware Cyber-Physical Systems

Prof. Dr. Christoph Grimm

Many thanks to:
Markus Damm, Jan Haase, Javier Moreno, Thomas Herndl, Stefan Mahlknecht, Josef Wenninger, Sumit Adhikari, Carna Radojicic, Jiong Ou, Florian Schupfer, Florian Brame
SoC Platforms for Cyber-Physical Systems

Progress in semiconductor technology:
- microcontroller,
- sensors, power electronics,
- RF interfaces,
for complete systems in single package or chip!

(Picture: SINTEF/Infineon Austria)

Cyber-Physical Systems, WSN, AI, IoT, ...
Dependability, adaptivity, resilience,
networking 100,000s of nodes in focus.

mobility, autonomy = LOW/ULTRA-LOW POWER?
1. Why Energy/Power-Awareness?
2. Challenges ...
3. ... and help by model-based design
4. Lessons learned
 – Methodology
 – Architecture
Power Aware Design vs. Energy Aware Design

Power Awareness
- Power peaks below limit
- Caused by switching activities/capacities
- Heating, IR-Drop, crosstalk

Energy Awareness
- Energy for task below limit
- Caused by leakage
- Enable long run-times, autonomy

Not independent!
- (Trivial: Power = Energy d/dt)
- Efficiency of power supply, ...
Smart Systems … (as seen e.g. by EPoSS for Europe 2020)

1990
First generation:
- Sensing + actuation
- Signal conditioning, preprocessing
- Communication via bus interface

2005
Second generation:
- Multifunctional sensing, actuation, inference
- Predictive, adaptive
- Networking, partially autonomous

2020
Third generation:
- Self-calibrating, self-healing
- Artificial intelligence
- Self-organized network
- **Energy autonomous**

Internet of things
Smart home
Smart grid
Smart production

(Figure: BOSCH)

(Figure: Infineon)
Energy Harvesting Opportunities
(e.g. in Automobile)

Generation:
- Passive RFID

 0.1 uW / cm^2 Antenna
- Photovoltaics

 10 $\text{uW-15.000 uW} / \text{cm}^2$
- Active RFID – Active

 up to 4W, falls quadratic with distance
- Thermal

 some W, increases with temperature

Energy-aware design:
- Generation depends on location, scenario
- Consumption depends on use, design, ...

Consumption:
- Computing

 some uW
- Transmitting

 some mW
- Sensing

 (depends on kind of Sensor)
Smart Home, Smart Grid, Ambient Intelligence, e-Health
Smart Home - Really Smart?

Number of Nodes (Home)
- Lighting: 10-50
- Windows open?: 10-20
- Doors?: 10-50
- Scenario recogn.: 20-50
- **... sum:** 10-100s

Standby
- Today’s avg.: 1 .. 10 W
- Today’s best: 100 mW
- SmartCoDe’s ZigBee: 50-90mW
- Ambitious objective: 1 .. 10 mW

Standby Power of Smart Building

<table>
<thead>
<tr>
<th>Number of Nodes</th>
<th>Today ...</th>
<th>2015?</th>
<th>Target for 2020?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Node</td>
<td>1 .. 10 W</td>
<td>100 mW</td>
<td>10 mW</td>
</tr>
<tr>
<td>10 Nodes</td>
<td>10 .. 100 W</td>
<td>1 W</td>
<td>100 mW</td>
</tr>
<tr>
<td>1000 Nodes</td>
<td>1 .. 10 KW</td>
<td>100 W</td>
<td>10 W</td>
</tr>
</tbody>
</table>

Energy aware + Power aware design for efficiency of power converters!
Design of Energy-Aware Cyber-Physical Systems

1. Why Energy/Power-Awareness?
2. Challenges ...
3. ... and help by model-based design
4. Lessons learned
 - Methodology
 - Architecture
Design: Hugo De Man (@Talk at 60th Anniversary of Manfred Glesner ...)

Software centric systems
(7th heaven?)

Application: usage, QoS requirements
Network: MAC, rouging
OS: power management strategies
Middleware: scheduling resources

Architecture: power gating, DVFS, ...
Circuit: Adiabatic, Sub-threshold, ...
Technology: leakage power, capacities, ...

Application development
„Platform“, fixed API
Circuit design

Hell of nano-scale physics
Example:
Advanced TPMS

Usage of hardware defined by
- Scenario & Application
- Communication protocols
- Architecture

Energy management:
- Know application and scenarios
- Develop power management strategy
- Match with RT-Level infrastructure
- Match with technology

Power consumed in hardware,
Battery for days.
Challenge 1:
Power consumption vertically, EDA horizontally

Design today
mostly horizontal

Needed for
Power/energy aware design:

Application: usage, QoS requirements
Network: MAC, rouging
OS: power management strategies
Middleware: scheduling resources
Architecture: power gating, DVFS, ...
Circuit: Adiabatic, Sub-threshold, ...
Technology: leakage power, capacities, ...
Challenge 2:

What is the cause of power consumption?

- "Due to command to do X from network"
- "The software running on the processor"
- "The processor/transceiver/..."!
- "Due to the physical scenario Y"
Can EDA help?

Short answer:
NO.

Unless you put all this in one formal model to enable overall system optimization!

But: modelling/simulation is first step!

- **Application:** usage, QoS requirements
- **Network:** MAC, rouging
- **OS:** power management strategies
- **Middleware:** scheduling resources
- **Architecture:** power gating, DVFS, ...
- **Circuit:** Adiabatic, Sub-threshold, ...
- **Technology:** leakage power, capacities, ...
Design of Energy-Aware Cyber-Physical Systems

1. Why Energy/Power-Awareness?
2. Challenges ...
3. ... and help by model-based design
4. Lessons learned
 – Methodology
 – Architecture
Model-based Approach, Concept

Application: usage, QoS requirements
Network: MAC, routing
OS: power management strategies
Middleware: scheduling resources

Architecture: power gating, DVFS, ...
Circuit: Adiabatic, Sub-threshold, ...
Technology: leakage power, capacities, ...

Design issue modeled accurately

„Behavioural“ model
Model-Based Approach [Haase 2012]

+ **Means/tools to**
 - Estimate power at various levels of abstraction
 - Trace power consumption to its causes

Cycle-accuracy

- Microcontroller Emulators
 - ATEMU
 - MSPsim
 - AVRORA

- Operating System Emulators
 - TOSSIM
 - TOSSF
 - COOJA
 - Emsim

- Real-code application
 - Operating System + Drivers + API
 - Hardware Abstraction Layer (HAL)
 - Hardware interfaces

Functional Simulation

- Network and System Simulators
 - SNOPS
 - PAWiS
 - SensorSim
 - VisualSense
 - IDEA1
 - SENSE
 - Prowler
 - J-Sim
 - ns-2

SystemC? with AMS, TLM ext.

e.g.: **SYCYPHOS**
(SNOPS, SmartCoDe, ANDRES)
SystemC + TLM + AMS extensions!
SystemC AMS, Modelling AMS, RF, Physical systems

TDF Process

discrete Process

processing()
{
 out.write(...)
}

H(s), H(z), DAE

out = f(in)

electr. network

R
C

ReCoSoC: Design of Energy-Aware Cyber-Physical Systems
Modelling Communication with TLM

TLM 2.0
- Models communication via buses
- Abstracts data granularity ("payload"), timing accuracy

Wireless TLM
- Route of packet in a WSN: forks, dead ends, ...
- Modeling "air": reflections, obstacles, etc. for wireless transmissions
WSN extensions for the TLM 2.0 generic payload [Damm 2009, 2010]

Packet sent:
Updated by node before it passes transaction to environment.

Packet from „Air“
Updated by environment before it passes transaction to nodes
• received signal quality
• routing
• power used for task
Power Profiling (1)

Transceiver:

...
set_psm_state(run)
...
...
set_psm_state(sleep)
...

Power state machine, Power states:

- run
 Pr [W]

- sleep
 Ps [W]

Power logfile
Power Profiling [Haase 2011]

M2M Commands

Transaction A->B: Get Pressure

Power Logfile

SW Activities

Listening
Receiving
Sensing

(Re-) Transmitting

Components

µP ISS (Power)
Transceiver (Power)
Sensor (Power)

Power models from SNOPS/SYCYPHOS library
Architecture Exploration: Non-ideal Behavior

Complete model with assumed/measured parameters!

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Type</th>
<th>Default value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>sc_module_name</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>_gain</td>
<td>double</td>
<td>-</td>
<td>gain in dB</td>
</tr>
<tr>
<td>_ip3</td>
<td>double</td>
<td>-</td>
<td>IP3 in dBm</td>
</tr>
<tr>
<td>_ideal</td>
<td>bool</td>
<td>-</td>
<td>true for simulation of ideal LNA, otherwise false</td>
</tr>
</tbody>
</table>
Architecture Exploration: Power Management

Execution of TDF processes controlled by clk/enable signals (events), SW by Interrupts (events)
Architecture Exploration: X-Domain partitioning

Add Instruction Set Simulator(s) of processors to be used

Protocol Processor ASIC, DSP

μP Memory

Software Applikation Phy-App Layer

Control & Power Management

PowerDown

Clk, Enable

Interrupt

Add Instruction Set Simulator(s) of processors to be used

ReCoSoC: Design of Energy-Aware Cyber-Physical Systems
Example: Power profiling of TPMS with In-Car WSN; 18 8-Bit-uC with Firmware + Transceiver + Sensors
Example: Power profiling of TPMS with In-Car WSN; 18 8-Bit-uC with Firmware + Transceiver + Sensors

(Video showing Driving scenario and estimated power assigned to processors, analog/RF, Sensors, SW activities, Transactions ...)

ReCoSoC: Design of Energy-Aware Cyber-Physical Systems
Design of Energy-Aware Cyber-Physical Systems

1. Why Energy/Power-Awareness?
2. Challenges ...
3. ... and help by model-based design
4. Lessons learned
 – Methodology
 – Architecture
Lessons learned (Methodology)

Key for „low power/energy“:
Sure all levels must be involved, but 2 things very useful

1. **Very early power budgeting** and estimation using functional models
2. Granularity of **infrastructure** for **power gating** (RFTS) or regulating (DVFS, AVFS) is key
 - **Bottom up**: determines standby power
 - **Top-down**: determines duty cycles
 - Important: Times for entering / leaving power states
 - Power converters
 - Clock generation (e.g. PLL)
Lessons learned (Architecture)

uC spend (too) much power/time for waiting, administrating peripherals!

Benchmark developed:

Specifically optimized re-configurable ASIC: 200 -> 0.12 nJ [Glaser 2010]
Lessons learned (Architecture)

Don’t wake processor for frequent, „simple“ tasks:

Use of
a) Simple, specific processor
b) Re-configurable system, optimized for specific task

Specifically optimized re-configurable ASIC: 0.12 nJ [Glaser 2010]