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SoC	  PlaMorms	  for	  Cyber-‐Physical	  Systems	  

(Picture:	  SINTEF/Infineon	  Austria)	  

Cyber-‐Physical	  Systems,	  WSN,	  AI,	  IoT,	  ...	  
Dependability,	  adapTvity,	  resilience,	  
networking	  100.000s	  of	  nodes	  in	  focus.	  
	  
mobility,	  autonomy	  =	  	  LOW/ULTRA-‐LOW	  POWER?	  	  

Progress	  in	  semiconductor	  technology:	  
•  microcontroller,	  	  
•  sensors,	  power	  electronics,	  
•  RF	  interfaces,	  	  

for	  complete	  systems	  in	  single	  package	  or	  chip!	  	  
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Design	  of	  Energy-‐Aware	  Cyber-‐Physical	  Systems	  

	  
	  
1.  Why	  Energy/Power-‐Awareness?	  	  
2.  Challenges	  ...	  
3.  	  	  	  ...	  and	  help	  by	  model-‐based	  design	  
4.  Lessons	  learned	  	  

–  Methodology	  
–  Architecture	  
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Power	  Aware	  Design	  vs.	  Energy	  Aware	  Design	  	  

Power	  Awareness	  
§  Power	  peaks	  below	  limit	  
§  Caused	  by	  switching	  acTviTes/capac.	  	  
§  HeaTng,	  IR-‐Drop,	  crosstalk	  
	  
Energy	  Awareness	  
§  Energy	  for	  task	  below	  limit	  
§  Caused	  by	  leakage	  	  
§  Enable	  long	  run-‐Tmes,	  autonomy	  
	  
Not	  independent!	  	  
§  (Trivial:	  Power	  =	  Energy	  d/dt)	  

§  Efficiency	  of	  power	  supply,	  ...	  	  
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Smart	  Systems	  ...	  (as	  seen	  e.g.	  by	  EPoSS	  for	  Europe	  2020)	  	  
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First	  generaHon:	  	  
§  Sensing	  +actuaTon	  
§  Signal	  condiToning,	  

preprocessing	  
§  CommunicaTon	  via	  

bus	  interface	  

Second	  generaHon:	  	  
§  MulTfuncTonal	  

sensing,	  actuaTon,	  
inference	  

§  PredicTve,	  adpaTve	  
§  Networking,	  

parTally	  autonomous	  

Third	  generaHon:	  	  
§  Self-‐calibraTng,	  	  

self-‐healing	  	  
§  ArTficial	  intelligence	  
§  Self-‐organized	  

network	  
§  Energy	  

autonomous	  

Internet	  of	  things	  
Smart	  home	  
Smart	  grid	  	  
Smart	  produc4on	  

1990	   2005	   2020	  

(Figure:	  BOSCH)	   (Figure:	  Infineon)	  
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Energy	  HarvesTng	  OpportuniTes	  	  
(e.g.	  in	  Automobile)	  
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GeneraHon:	  
Passive	  RFID 	   	  0.1	  uW	  /	  cm2	  Antenna	  
Photovoltaics 	   	  10	  uW-‐15.000	  uW	  /	  cm2	  	  
AcTve	  RFID	  –	  AcTve	   	  up	  to	  4W,	  falls	  quadraTc	  with	  distance	  
Thermal	   	   	  some	  W,	  increases	  with	  temperature	  

ConsumpHon:	  
CompuTng	   	   	  some	  uW	  
Transmieng	   	   	  some	  mW	  
Sensing	  	   	   	  	  (depends	  on	  kind	  of	  Sensor)	  

	   	   	   	  	  

Energy-‐aware	  design:	  	  
GeneraTon	  depends	  on	  locaTon,	  scenario	  
ConsumpTon	  depends	  on	  use,	  design,	  ...	  



Smart	  Home,	  Smart	  Grid,	  	  
Ambient	  Intelligence,	  
e-‐Health	  
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Power	  DistribuTon	  Grid	  

InformaTon	  Flow	  

Smart	  
Meter	  

Gate-‐	  
Way	  

Energy-‐	  
management	  



Smart	  Home	  -‐	  Really	  Smart?	  

Standby	  Power	  of	  
Smart	  Building	  

Today	  ...	   2015?	   Target	  for	  2020?	  

1	  Node	   1	  	  ..	  10	  W	   100	  mW	   10	  mW	  
10	  Nodes	   10	  ..	  100	  W	   1	  W	   100	  mW	  
1000	  Nodes	   1	  ..	  10	  KW	   100	  W	   10	  W	  
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Standby	  
Today‘s	  avg.: 	   	  1	  ..	  10	  W	  
Today‘s	  best	  :	   	   	  100	  mW	  
SmartCoDe‘s	  ZigBee: 	  50-‐90mW	  
AmbiTous	  objecTve: 	  1	  ..	  10	  mW	  

Number	  of	  Nodes	  (Home)	  
LighTng 	   	  10-‐50	  
Windows	  open? 	  10-‐20	  
Doors? 	   	  10-‐50	  
Scenario	  recogn. 	  20-‐50	  
...	  sum: 	   	  10-‐100s	  

Energy	  aware	  +	  
Power	  aware	  design	  
for	  efficiency	  of	  power	  converters!	  



Design	  of	  Energy-‐Aware	  Cyber-‐Physical	  Systems	  

	  
	  
1.  Why	  Energy/Power-‐Awareness?	  	  
2.  Challenges	  ...	  
3.  	  	  	  ...	  and	  help	  by	  model-‐based	  design	  
4.  Lessons	  learned	  	  

–  Methodology	  
–  Architecture	  
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Design:	  Hugo	  De	  Man	  (@Talk	  at	  60th	  Anniversary	  of	  Manfred	  Glesner	  ...)	  
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ApplicaTon	  development	  

Circuit	  design	  

„PlaWorm“,	  fixed	  API	  

Solware	  centric	  systems	  
(7th	  heaven?)	  

Hell	  of	  nano-‐scale	  physics	  

?	  

ApplicaHon:	  usage,	  QoS	  requirements	  
Network:	  MAC,	  rouging	  
OS:	  power	  managent	  strategies	  
Middleware:	  scheduling	  ressources	  	  
	  
	  
	  
	  
	  
Architecture:	  power	  gaTng,	  DVFS,	  ...	  
Circuit:	  AdiabaTc,	  Sub-‐threshold,	  ...	  	  
Technology:	  leakage	  power,	  capaciTes,	  ...	  



Example:	  	  
Advanced	  TPMS	  
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Power	  consumed	  in	  
hardware,	  
Baoery	  for	  days.	  

Usage	  of	  hardware	  defined	  by	  	  
-‐  Scenario	  &	  ApplicaTon	  
-‐  CommunicaTon	  protocols	  
-‐  Architecture	  	  

Energy	  management:	  
-‐  Know	  applicaTon	  and	  scenarios	  
-‐  Develop	  power	  management	  strategy	  
-‐  Match	  with	  RT-‐Level	  infrastructure	  
-‐  Match	  with	  technology	  



Solware	  centric	  systems	  
(7th	  heaven?)	  

Hell	  of	  nano-‐scale	  physics	  

Challenge	  1:	  	  
Power	  consumpTon	  ver4cally,	  EDA	  horizontally	  
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Needed	  for	  	  
Power/energy	  aware	  design:	  
	  
	  
	  	  	  
ApplicaHon:	  usage,	  QoS	  requirements	  
Network:	  MAC,	  rouging	  
OS:	  power	  managent	  strategies	  
Middleware:	  scheduling	  ressources	  	  
Architecture:	  power	  gaTng,	  DVFS,	  ...	  
Circuit:	  AdiabaTc,	  Sub-‐threshold,	  ...	  	  
Technology:	  leakage	  power,	  capaciTes,	  ...	  

Design	  today	  
mostly	  horizontal	  
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Challenge	  2:	  	  
What	  is	  the	  cause	  of	  power	  consump4on?	  
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„Due	  to	  command	  to	  do	  X	  from	  network“	  
	  
„The	  solware	  running	  on	  the	  processor“	  
	  
	  
„The	  processor/transceiver/...“!	  	  
	  
„Due	  to	  the	  physical	  scenario	  Y“	  

13	  

Physical	  interacTons,	  scenario	  

Networking,	  coordinaTon	  



Can	  EDA	  help?	  

Short	  answer:	  	  
NO.	  
	  
	  	  Unless	  you	  put	  all	  this	  
	  	  in	  one	  formal	  model	  to	  
	  	  enable	  overall	  system	  	  
	  	  opTmizaTon!	  
	  
	  
	  
But:	  modelling/simulaTon	  is	  first	  step!	  	  
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1.  Why	  Energy/Power-‐Awareness?	  	  
2.  Challenges	  ...	  
3.  ...	  and	  help	  by	  model-‐based	  design	  
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Model-‐based	  Approach,	  Concept	  
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ApplicaHon:	  usage,	  QoS	  requirements	  
Network:	  MAC,	  rouging	  
OS:	  power	  managent	  strategies	  
Middleware:	  scheduling	  ressources	  	  
	  
Architecture:	  power	  gaTng,	  DVFS,	  ...	  
Circuit:	  AdiabaTc,	  Sub-‐threshold,	  ...	  	  
Technology:	  leakage	  power,	  capaciTes,	  ...	  

Design	  issue	  
modeled	  
accurately	  

Physical	  interacTons,	  scenario	  

Networking,	  coordinaTon	  

„Behavioural“	  model	  



Model-‐Based	  Approach	  [Haase	  2012]	  

+	  Means/tools	  to	  
–  EsTmate	  power	  at	  verious	  levels	  of	  abstracTon	  
–  Trace	  power	  consumpTon	  to	  its	  causes	  
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Fig. 1. Abstraction levels of simulation in WSNs, from cycle accurate simulation to pure functional simulation. Simulators are classified in their predominant
level, although some of them permit cross-level simulation.

TABLE I
NETWORK SIMULATORS SUMMARY TABLE

were released. Table I outlines some of these tools, which are
briefly described in Sections IV-A–IV-I.

A. General Network Simulators

First, WSN simulators consisted on extensions for more gen-
eral network simulators.

One of those simulators was the network simulator ns-2 [23],
a very popular free discrete-event network simulator based on
REAL simulator [24].

ns-2 was not optimized for wireless ad-hoc networks. Scal-
ability was an issue as WSNs are usually large networks with
even more than thousand nodes. Modifications were made to
solve this issue. For instance, whenever a node sent a message,
all the other nodes received the signal, even when its strength
was so low that influence in communication was negligible: nei-
ther can these signals be received by those nodes nor contribute
to the received noise. A truncation algorithm which prevents
very far allocated nodes from receiving a signal was proposed
in [25], making ns-2 much more scalable.

While independent from ns-2 and not compatible, there is
a new simulator intended to be a new improved version and
eventual replacement of ns-2, named ns-3 [26].

The most important commercial general network simulator is
OPNET [27], which also includes a wireless library.

The best advantage of ns-2, ns-3, and OPNET tools is the
amount of protocol implementations which already exist, which
can be reused in new projects. However, apart from reusability
of algorithms and protocols, their performance is, in general,
poorer than in more specific simulators.

Besides, although it is possible to include new modules, they
are not conceived for hardware modeling, which is necessary to
estimate power consumption.

B. SensorSim

The first documented sensor network simulator was Sen-
sorSim [28]. It was based on the ns-2 simulation core. Due to
the high-level abstraction of ns-2, which is a general purpose
network simulator, SensorSim added specific models required
for sensor networks.

First, SensorSim was already concerned about power as a
restricting factor for WSNs deployment. Therefore, it added
power models for the hardware components.

Second, ns-2 applications are mostly generic traffic genera-
tors. SensorSim permitted simulating real applications as well
as interacting with real nodes (hardware-in-the-loop).

SystemC?	  
with	  AMS,	  TLM	  ext.!	  

e.g.:	  	  
SYCYPHOS	  
(SNOPS,	  SmartCoDe,	  
ANDRES)	  



SystemC	  +	  TLM	  +	  AMS	  extensions!	  
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SystemC	  

SynchronisaTon	  Layer	  

Methods,	  DSP,	  
Analog/RF	  

Dyn.	  Timed	  Data	  	  
Flow	  (TDF);	  

	  

Macro	  Models	  
DAE,	  H(s)	  

Electr.	  Networks,	  
Signal	  Flow	  

SW	  and	  OS	  
TransacTon	  Level	  
Modeling(TLM);	  
InstrucTon-‐Set	  
SimulaTon	  of	  

uP,	  uP	  

C/C++	  

So
lw

ar
e	  

Di
gi
ta
l	  H

ar
dw

ar
e	  



SystemC	  AMS,	  Modelling	  AMS,	  RF,	  Physical	  systems	  
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TDF	  Process	  FIFO	   FIFO	  

t	  /	  ms	  
0	   2	   4	   6	   8	   10	   12	   14	   16	  t	  /	  ms	  0	   2	   4	   6	   8	   10	   12	   14	   16	  

processing()	  
{	  
	  	  out.write(…)	  
}	  

discrete	  
Process	  

R	   C	  

electr.	  network	  

out	  =	  f(in)	  

H(s),	  H(z),	  DAE	  



Modelling	  CommunicaTon	  with	  TLM	  

TLM	  2.0	  
§  Models	  communicaTon	  

via	  buses	  
§  Abstracts	  data	  granularity	  	  

(“payload”),	  Tming	  accuracy	  
	  
Wireless	  TLM	  
§  Route	  of	  packet	  in	  a	  WSN:	  	  

forks,	  dead	  ends,	  …	  
§  Modeling	  “air”:	  	  

reflecTons,	  obstacles,	  etc.	  for	  
wireless	  transmissions	  

Initiator 1 Target 1 

Initiator 2 

I n t
 e r c

 o n
 n e

 c t 1
 

I n t
 e r c

 o n
 n e

 c t 2
 

Target 2 

Target 3 

Target 4 

Target 5 

SN 1 

SN 3 

SN 4 

SN 2 
SN 5 

SN 7 

SN 8 

SN 6 
SN 9 

SN 10 SN 11 
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WSN	  extensions	  for	  the	  TLM	  2.0	  generic	  payload	  
[Damm	  2009,	  2010]	  

GP 
target   5 
data     1 . 5 

ENV - EXT 
route - adr  3 
strength   7 . 5 

1 
GP 

target   5 
data     1 . 5 

NODE - EXT 
route - adr  3 
strength   0 . 9 
route - adr  3 
strength   0 . 3 

2 
3 

ENV - EXT 
route - adr  3 
strength   7 . 5 

2 
GP 

target   5 
data     1 . 5 

NODE - EXT 
route - adr  3 
strength   0 . 9 
route - adr  3 
strength   0 . 3 

2 
3 

ENV - EXT 
route - adr  5 
strength   6 . 3 

3 

NODE - EXT 
route - adr  3 
strength   0 . 9 
route - adr  3 
strength   0 . 3 
route - adr  5 
strength   0 . 7 
route - adr  5 
strength   1 . 1 

2 
3 
4 
5 

GP 
target   5 
data     1 . 5 

ENV - EXT 
route - adr  5 
strength   6 . 3 

4 

SN 1 Environ - 
ment 

1 
Environ - 
ment 

3 

SN 2 

SN 3 

2 

2 

SN 4 

SN 5 
4 

4 
Packet	  sent:	  
Updated	  by	  node	  
before	  it	  passes	  	  
transacTon	  to	  
environment.	  

Packet	  from	  „Air“	  
Updated	  by	  	  
environment	  before	  it	  
passes	  transacTon	  
to	  nodes	  
• 	  received	  signal	  quality	  
• 	  rouTng	  
• 	  power	  used	  for	  task	  
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Power	  Profiling	  (1)	  
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run	  
Pr	  [W]	  

sleep	  
Ps	  [W]	  

Power	  state	  machine,	  
Power	  states	  

Transceiver:	  

...	  
set_psm_state(run)	  
...	  
...	  
set_psm_state(sleep)	  
...	  

Power	  
logfile	  



Power	  Profiling	  [Haase	  2011]	  
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M2M	  
Commands	  

TransacTon	  
A-‐>B:	  Get	  Pressure	   ……………..	  

SW	  
Ac4vi4es	  

Listening	   Receiving	   Sensing	  
(Re-‐)	  
Trans-‐	  
mieng	  

……	  

Components	   µP	  ISS	  
(Power)	  

Transceiver	  
(Power)	  

Sensor	  
(Power)	  

………………	  

Power	  models	  from	  SNOPS/SYCYPHOS	  library	  

Power	  
Logfile	  



Architecture	  ExploraTon:	  Non-‐ideal	  Behavior	  
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rf_sig d_in

DSP Alg.
Demodulation
Clock recovery Bits

loc_osc

if_sig

mixer

agc_ctrl

gain

lp_filter_tdf

ctrl_config

Frontend

VCO

Software
Applikation

Phy-App Layer
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2.9 LNA (Low-noise amplifier) 
This class amplifies an input signal with a certain gain. User can set the gain with the 
parameter _gain. This class also allows user to model the intercept modulation of 
LNA. With the parameter “_ideal” user can switch between an ideal and a non-ideal 
LNA module. The IP3 point can be set with the parameter _ip3. 
 

 
 
Class definition: lna(sc_core::sc_module_name n, double _gain, double _ip3, bool 

_ideal); 
 
Interfaces: sca_tdf::sca_in<double> in;     
    sca_tdf::sca_out<double> out;   
 

Parameter Type Default value Description 
n sc_module_name -  
_gain double - gain in dB 
_ip3 double - IP3 in dBm 
_ideal bool -  true for simulation of 

ideal LNA, otherwise false  
 

2.10  Mixer 
This class converts the input signal from low frequency to high frequency or vice 
versa. User can set the gain of mixer with the parameter _gain (default equals 1). 
This class also allows user to model the intercept modulation of mixer. With the 
parameter “_ideal” user can switch between an ideal and a non-ideal LNA module. 
The IP3 point can be set with the parameter _ip3. 
 

 
 
Class definition:  mixer(sc_core::sc_module_name n, double gain, double ip3, 

bool _ideal) 
 
Interfaces: sca_tdf::sca_in<double> sig_in; 
   sca_tdf::sca_in<double> lo_in; 
   sca_tdf::sca_out<double> out; 

f_jioer-‐Jioer	  of	  VCO	  

Complete	  model	  with	  assumed/measured	  parameters!	  



Architecture	  ExploraTon:	  Power	  Management	  

ExecuTon	  of	  TDF	  processes	  controlled	  by	  clk/enable	  signals	  
(events),	  SW	  by	  Interrupts	  (events)	  
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rf_sig d_in

DSP Alg.
Demodulation
Clock recovery Bits

loc_osc

if_sig

mixer

agc_ctrl

gain

lp_filter_tdf

ctrl_config

Frontend

VCO

Software
Applikation

Phy-App Layer

Control & Power Management

InterruptClk,	  EnablePowerDown

sca_tdf::sc_in<bool>	  	  clk;	  

next_acTvaTon(clk.pos()	  );	  



rf_sig d_in

DSP Alg.
Demodulation
Clock recovery Bits

loc_osc

if_sig

mixer

agc_ctrl

gain

lp_filter_tdf

ctrl_config

Frontend

VCO

Software
Applikation

Phy-App Layer

µP
 Memory

Protocol 
Processor
ASIC, DSP

Architecture	  ExploraTon:	  
X-‐Domain	  parTToning	  

Add	  InstrucTon	  Set	  Simulator(s)	  	  
of	  processors	  to	  be	  used	  
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Control & Power Management

InterruptClk,	  EnablePowerDown

Processing()	  
{	  …	  };	  



Example:	  Power	  profiling	  of	  	  TPMS	  with	  In-‐Car	  WSN;	  
18	  8-‐Bit-‐uC	  with	  Firmware	  +	  Transceiver	  +	  Sensors	  
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(Video	  showing	  Driving	  
scenario	  and	  esTmated	  
power	  assigned	  to	  
processors,	  analog/RF,	  
Sensors,	  SW	  acTviTes,	  
TransacTons	  ...)	  



Design	  of	  Energy-‐Aware	  Cyber-‐Physical	  Systems	  

	  
	  
1.  Why	  Energy/Power-‐Awareness?	  	  
2.  Challenges	  ...	  
3.  	  	  	  ...	  and	  help	  by	  model-‐based	  design	  
4.  Lessons	  learned	  	  

–  Methodology	  
–  Architecture	  
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Lessons	  learned	  (Methodology)	  

Key	  for	  „low	  power/energy“:	  
Sure	  all	  levels	  must	  be	  involved,	  but	  2	  things	  very	  useful	  	  
1.   Very	  early	  power	  budgeHng	  and	  esTmaTon	  using	  funcTonal	  models	  
2.  Granularity	  of	  infrastructure	  for	  power	  gaHng	  (RFTS)	  or	  regulaTng	  	  

(DVFS,	  AVFS)	  is	  key	  
–  Booom	  up:	  determines	  standby	  power	  
–  Top-‐down:	  determines	  duty	  cycles	  
–  Important:	  Times	  for	  entering	  /	  leaving	  power	  states	  

•  Power	  converters	  
•  Clock	  generaTon	  (e.g.	  PLL)	  
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Lessons	  learned	  (Architecture)	  

uC	  spend	  (too)	  much	  power/Tme	  for	  waiTng,	  administraTng	  peripherals!	  
Benchmark	  developed:	  	  
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implementations of a sensor interface are examined. This
is followed by a description of the proposed approach.
This work is finished by a conclusion and outlook to future
work.

2 Related Work

In [3] we investigated the power consumption of the sen-
sor interface application mentioned above for several mi-
crocontrollers, as a hard-coded hardware block, and with
the novel reconfigurable hardware architecture.

The power consumption of five different low-power mi-
crocontrollers with 8- or 16-bit RISC CPUs was investi-
gated. The sensor control is implemented as a common
C function for every chip. The execution times were cal-
culated from counting the assembler instruction execution
cycles and dividing by the operating frequency. For the
waiting periods constant values were assumed. The power
consumption was estimated by using typical data sheet
values at 4 MHz and 25 �C.

The hardware implementations were realized with an
FPGA (field programmable gate array) instead of produc-
ing of a chip. Note the stack of reconfigurability, where
the underlying technology (FPGA) is reconfigurable and
the implemented circuit itself is reconfigurable too. Due
to the usage of a commercially available FPGA instead of
a full- or semi-custom chip design, no optimized multi-bit
cells were implemented.

The two FPGA implementations only differ in the state
machine (FSM) type. In the reconfigurable implementa-
tion a Block RAM is used while the other one uses a hard-
coded state machine. The difference in current consump-
tion is therefore mostly caused by the Block RAM which
offers several different configurations, layouts, and wrap-
pers which adds overhead in power consumption. Besides

this overhead both FPGA implementations comprise over-
head due to the fine granularity of the logic functions for
the data-path oriented tasks as well as for the routing on
the FPGA chip.

The energy consumption values of a single sensor mea-
surement performed by the different implementations are
summarized in Figure 1. While the microcontroller im-
plementations only differ slightly (189.15 nJ to 266.22 nJ
with an average of 219.08 nJ and a range of 35.2 %), the
difference to the hardware implementations is tremendous
(2.09 nJ and 5.61 nJ). The five bars for the microcontroller
implementations are divided into the individual compo-
nents (e.g., wakeup, interrupt latency, context save, ...).
The FPGA implementation only consists of the function
part because it doesn’t require any microcontroller related
tasks.

Compared to the lowest power microcontroller
MSP430F5418, the hardcoded state machine implementa-
tion in the FPGA requires over 90 times less energy. The
two hardware implementations differ by a factor of ⇡2.7
with the reconfigurable implementation requiring more
energy. But even this requires nearly 34 times less energy
than the MSP430F5418.

Due to the different semiconductor processes and the
underlying architectures of the FPGA and the microcon-
trollers the comparison is inaccurate. A fair comparison
would require to implement both, a low-power microcon-
troller core and the sensor interface, on a common chip.
However, due to the high overhead of the FPGA imple-
mentation the total energy per sensor measurement of the
hardware implementation will decrease even further. On
the other hand, the firmware implementation will not ex-
perience such a large reduction because optimized low-
power microcontrollers were used. So the difference be-
tween these two implementations will further increase,
which strengthens the optimization potential
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Figure 1. Energy consumption of one sensor measurement performed by different implementations. The first five bars
represent the results of microcontroller implementations, broken down by contributing facility. The right two bars show
the consumption of two FPGA implementations, once with a hard-coded FSM and once with a reconfigurable FSM.

Specifically	  opTmized	  re-‐configurable	  
ASIC:	  200	  -‐>	  0.12	  nJ	  [Glaser	  2010]	  



Lessons	  learned	  (Architecture)	  

Don‘t	  wake	  processor	  for	  	  
frequent,	  „simple“	  tasks:	  	  
	  
	  
	  
	  
	  
Use	  of	  
a)  Simple,	  specific	  processor	  
b)  Re-‐configurable	  system,	  	  

opTmized	  for	  specific	  task	  
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3 Reconfigurable Architecture

Starting from the above findings, we propose to introduce
reconfigurable hardware blocks to a WSN SoC (see Fig-
ure 2) which independently conduct simple sub-tasks in-
stead of the CPU. The CPU is only activated if any further
(more complex) processing is required. Therefore these
logic blocks act as a “filter” for these events.

3.1 Using Reconfiguration
Shifting the border in a software/hardware partitioning
process towards hardware reduces the flexibility of the fi-
nal application. While software can be modified by re-
programming the code memory, synthesized logic cores
require a redesign of the chip. Hence, there are three im-
portant reasons for flexibility:

1. Covering multiple different applications for a higher
market potential.

2. Adopting to different external components across
PCB design cycles.

3. Fixing bugs without a chip redesign.
Therefore we propose to make the introduced dedicated
hardware blocks reconfigurable.

In contrast to FPGA cores (e.g., [4]), which consist
of fine-grained structures optimal for control dominated
functions, we propose to also support multi-bit logic
blocks and a multi-bit routing architecture for computa-
tional functions. The high overhead is outlined with the
following example. The Xilinx Virtex FPGA architec-
ture requires 864 bits of configuration for every config-
urable logic block (CLB) [5] (48 frames per column ⇥ 18
bits per row). We estimated the number of configuration
bits required for only the logic function of one CLB to be
86 by counting the configurable LUTs and multiplexers
(MUXes). From these numbers it is clear that the logic
itself is configured by only 10 % of the configuration bit
stream while 90 % account for the connections and rout-
ing. To avoid this high overhead, [6] proposes a multi-bit
routing architecture which utilizes the inherent regularity
of logic vectors.

To further reduce the power consumption and area re-
quirement, the proposed approach requires the user to
define an application class for which the reconfigurable
block is inserted. This class describes the field of planned
actual applications. Then the reconfigurable logic block
is developed to be tailored to provide exactly those struc-
tures which are required to implement any of the desired
applications. After the manufacturing of the SoC, the ac-
tual application is specified and implemented by configur-
ing the reconfigurable block accordingly.

3.2 Components
Our approach includes concepts for the instantiated cells
(multi-bit combinational and sequential cells, reconfig-
urable cells), the reconfigurable routing between these
cells, interfaces of a block to other modules of the SoC, re-
configuration storage and interface (see Figure 3), as well
as tools to assist the developer.

FSM

|A−B|
>

P

Config

Param

Bus

Intr

Reset

Clk

Figure 3. Internals of a reconfigurable hardware block
(Intr: Interrupt, Clk: Clock, Config: configuration in-
terface, Param: parameterization interface, |A � B|:
absolute difference calculation, >: integer compari-
son, P: parameter register).

3.2.1 Cells

For the reconfigurable logic blocks a library of cells is
developed. These include typical standard library cells
(logic functions and registers) as well as multi-bit cells
(e.g., shifters, arithmetic functions), “tactical cells” [7]
(e.g., absolute difference, finite state machines, shift reg-
isters, CRC generators, timing generators), reconfigurable
cells (lookup tables, sum-of-product cells) and infras-
tructure cells (e.g., routing switches, interface blocks,
parametrization registers and especially the configuration
chain).

3.2.2 Routing

FPGAs provide rich resources for signal routing between
the individual logic blocks. In contrast to FPGAs the pro-
posed approach involves an irregular topology as well as
multi-bit lanes. It is crucial to include a proper set of rout-
ing resources tailored to the desired application class to
provide a high degree of flexibility in the final design.

3.2.3 Interfaces

Depending on its application class, every reconfigurable
logic block requires different interfaces to other peripher-
als like ADC, I2C bus, SPI bus, RF transceiver and mem-
ory (via an on-chip bus or direct signals). The CPU is
informed of an important event via an interrupt interface.
Finally, every block needs clock and reset signals.

3.2.4 Reconfigurability

Two main areas provide reconfigurability: Firstly the rout-
ing switches have to be configured to properly connect the
individual cells. Secondly certain cells themselves can
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Figure 11. Evaluation platform overview. The test chip is con-
nected via a crossbar switch to the MCU and FPGA evaluation
device. This is controlled via a PC.
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Figure 12. Evaluation platform photo.

low-power microcontrollers was investigated too and resulted in an
average of 219.08 nJ per sensor measurement. So, our approach
reduces the power consumption by a factor of nearly 1,900.

Due to the adaption of the reconfigurable sensor interface module
for the test chip (see Sec. 5.1) the signal paths go via large multi-
plexers with high fan-out nets which consume considerable switch-
ing power. This power is included in the measurement results and
can not be corrected mathematically. Secondly, the chip was pro-
duced in an automotive-qualified general-purpose 130 nm CMOS
which is not optimized for low-power applications. Including the
presented approach in a SoC which is produced in a special ultra-
low-power process (like the compared microcontrollers in [4]) will
therefore further reduce the power consumption. Both annotations
show, that the presented results are an upper bound for the cur-
rent consumptions and therefore a lower bound for the potential
for power reduction.

Figure 13. Average energy consumption per sensor measurement
performed by different implementations: firmware for five dif-
ferent microcontrollers, reconfigurable logic in an FPGA and re-
configurable logic as presented in this work by a test chip.

7 Conclusion
This paper discusses the methodology for designing reconfigurable
logic modules for WSN nodes. These are placed additionally to
the CPU into a WSN node SoC and autonomously perform tasks of
moderate complexity. Due to the reconfigurability of every mod-
ule, its functionality can be adapted flexibly. By relieving the CPU
from these tasks, it will remain in an inactive low-power mode for
extended periods which leads to fundamental power reductions.
Every reconfigurable logic module is specifically tailored to the ap-
plication class of its operational area. In the pre-silicon phase the
reconfigurable resources including the routing are specified. After
chip production, i.e. in the post-silicon phase, the actual application
is specified. The configuration is derived from the application de-
scription and mapped to a configuration bit stream. This is applied
to the reconfigurable circuitry and so configures it to implement the
application logic. The objective is to reduce power consumption
while maintaining a high degree of flexibility for the implemented
applications.
The methodology was demonstrated by realizing a hardware imple-
mentation of a reconfigurable sensor interface as test chip. A reduc-
tion of power consumption by a factor of nearly 2,000 compared to
a traditional firmware implementation clearly shows the potential
of the approach. Compared to the usage of a commercial FPGA ar-
chitecture to implement reconfigurable modules a reduction of the
power consumption by a factor of 18 was achieved. This proofs the
advantage of limiting the flexibility to a defined application class.
The evaluation showed some drawbacks, which primarily stem
from the utilization of a standard cell library. The architecture
contains multiplexers with a high number of inputs (esp. signal
switches) which considerably increase the area, delay, and switch-
ing power of the circuit. This will be improved by the use of trans-
mission gates connected in heterogeneous trees [29] and incorpo-
rating interconnect parasitics [30, 31]. Future work will also be
done on reconfigurable routing, development of multi-bit cells and
improvements of the tool chain to ease the implementation of re-
configurable hardware modules.
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