Design of Energy-Aware Cyber-Physical Systems

Prof. Dr. Christoph Grimm

Many thanks to:

Markus Damm, Jan Haase, Javier Moreno, Thomas Herndl, Stefan Mahlknecht, Josef Wenninger, Sumit Adhikari, Carna Radojicic, Jiong Ou, Florian Schupfer, Florian Brame

SoC Platforms for Cyber-Physical Systems

(Picture: SINTEF/Infineon Austria)

Progress in semiconductor technology:

- microcontroller,
- sensors, power electronics,
- RF interfaces,

for complete systems in single package or chip!

Cyber-Physical Systems, WSN, AI, IoT, ... Dependability, adaptivity, resilience, networking 100.000s of nodes in focus.

mobility, autonomy = LOW/ULTRA-LOW POWER?

Design of Energy-Aware Cyber-Physical Systems

- 1. Why Energy/Power-Awareness?
- 2. Challenges ...
- 3. ... and help by model-based design
- 4. Lessons learned
 - Methodology
 - Architecture

Power Aware Design vs. Energy Aware Design

Power Awareness

- Power peaks below limit
- Caused by switching activities/capacé
- Heating, IR-Drop, crosstalk

Energy Awareness

- Energy for task below limit
- Caused by leakage
- Enable long run-times, autonomy

act

Events

Time

Not independent!

HNISCHE UNIVERSITÄT

- (Trivial: Power = Energy d/dt)
- Efficiency of power supply, ...
 - ReCoSoC: Design of Energy-Aware Cyber-Physical Systems

Smart Systems ... (as seen e.g. by EPoSS for Europe 2020)

(Figure: BOSCH)

1990

2005

First generation:

- Sensing +actuation
- Signal conditioning, preprocessing
- Communication via bus interface

Second generation:

- Multifunctional sensing, actuation, inference
- Predictive, adpative
- Networking, partially autonomous

Internet of things Smart home Smart grid Smart production

2020

Third generation:

- Self-calibrating, self-healing
- Artificial intelligence
- Self-organized network
- Energy autonomous

Energy Harvesting Opportunities (e.g. in Automobile)

Generation:

Passive RFID Photovoltaics Active RFID – Active Thermal 0.1 uW / cm² Antenna 10 uW-15.000 uW / cm² up to 4W, falls quadratic with distance some W, increases with temperature

Energy-aware design:

Generation depends on location, scenario Consumption depends on use, design, ...

Consumption:

Computing Transmitting Sensing some uW some mW (depends on kind of Sensor)

Smart Home, Smart Grid, Ambient Intelligence, e-Health

Smart Home - Really Smart?

sum:	10-100s
Scenario recogn.	20-50
Doors?	10-50
Windows open?	10-20
Lighting	10-50

•	Energy aware + Power aware design		
Standby	for efficiency of power converters!		
Today's avg.:		1 10 W	
Today's b	est :	100 mW	
SmartCoDe's ZigBee:		50-90mW	
Ambitious	s objective:	1 10 mW	

Standby Power of Smart Building	Today	2015?	Target for 2020?
1 Node	1 10 W	100 mW	10 mW
10 Nodes	10 100 W	1 W	100 mW
1000 Nodes	1 10 KW	100 W	10 W

Design of Energy-Aware Cyber-Physical Systems

- 1. Why Energy/Power-Awareness?
- 2. Challenges ...
- 3. ... and help by model-based design
- 4. Lessons learned
 - Methodology
 - Architecture

Design: Hugo De Man (@Talk at 60th Anniversary of Manfred Glesner ...)

Software centric systems (7th heaven?) **Application:** usage, QoS requirements Application development **Network:** MAC, rouging **OS:** power managent strategies Middleware: scheduling ressources "Platform", fixed API Architecture: power gating, DVFS, ... Circuit: Adiabatic, Sub-threshold, ... Circuit design **Technology:** leakage power, capacities, ...

Hell of nano-scale physics

ReCoSoC: Design of Energy-Aware Cyber-Physical Systems

Example: Advanced TPMS

Usage of hardware defined by

- Scenario & Application
- Communication protocols
- Architecture

Energy management:

- Know application and scenarios
- Develop power management strategy
- Match with RT-Level infrastructure
- Match with technology

Power consumed in hardware, Battery for days.

Bus Node 1: RX

Node 9:

Node 3:

RX

CU.. cont

Sleep

Sleep

RX S. Sleep RX

TX

Sleep

Sleep

Sleep

Sleep

TX

CSMA

TX

ack-

Sleep

Challenge 1: Power consumption *vertically, EDA horizontally*

Design today mostly horizontal

Hell of nano-scale physics

Needed for Power/energy aware design:

Application: usage, QoS requirements
Network: MAC, rouging
OS: power managent strategies
Middleware: scheduling ressources
Architecture: power gating, DVFS, ...
Circuit: Adiabatic, Sub-threshold, ...
Technology: leakage power, capacities, ...

Challenge 2: What is the cause of power consumption?

"Due to command to do X from network"

"The software running on the processor"

-,,The processor/transceiver/..."!

"Due to the physical scenario Y"

Can EDA help?

Short answer: NO.

Unless you put all this in one formal model to enable overall system optimization! Application: usage, QoS requirements
Network: MAC, rouging
OS: power managent strategies
Middleware: scheduling ressources
Architecture: power gating, DVFS, ...
Circuit: Adiabatic, Sub-threshold, ...
Technology: leakage power, capacities, ...

But: modelling/simulation is first step!

Design of Energy-Aware Cyber-Physical Systems

- 1. Why Energy/Power-Awareness?
- 2. Challenges ...
- 3. ... and help by model-based design
- 4. Lessons learned
 - Methodology
 - Architecture

Model-based Approach, Concept

Application: usage, QoS requirementsNetwork: MAC, rougingOS: power managent strategiesMiddleware: scheduling ressources

Architecture: power gating, DVFS, ... Circuit: Adiabatic, Sub-threshold, ... Technology: leakage power, capacities, ...

Model-Based Approach [Haase 2012]

- + Means/tools to
 - Estimate power at verious levels of abstraction
 - Trace power consumption to its causes —

e.g.: **SYCYPHOS** (SNOPS, SmartCoDe, ANDRES)

SystemC + TLM + AMS extensions!

SystemC AMS, Modelling AMS, RF, Physical systems

Modelling Communication with TLM

TLM 2.0

- Models communication via buses
- Abstracts data granularity ("payload"), timing accuracy

Wireless TLM

FCHNISCHE UNIVERSITÄT

- Route of packet in a WSN: forks, dead ends, ...
- Modeling "air": reflections, obstacles, etc. for wireless transmissions

WSN extensions for the TLM 2.0 generic payload [Damm 2009, 2010]

ISFRSI

Power Profiling (1)

Power Profiling [Haase 2011]

Architecture Exploration: Non-ideal Behavior

Complete model with assumed/measured parameters!

Parameter	Туре	Default value	Description
n	sc_module_name	-	
_gain	double	-	gain in dB
_ip3	double	-	IP3 in dBm
_ideal	bool	-	true for simulation of
			ideal LNA, otherwise false

Architecture Exploration: Power Management

Execution of TDF processes controlled by clk/enable signals (events), SW by Interrupts (events)

Example: Power profiling of TPMS with In-Car WSN; 18 8-Bit-uC with Firmware + Transceiver + Sensors

Fechnische Universität

ISERSI AUTERN

Example: Power profiling of TPMS with In-Car WSN; 18 8-Bit-uC with Firmware + Transceiver + Sensors

Design of Energy-Aware Cyber-Physical Systems

- 1. Why Energy/Power-Awareness?
- 2. Challenges ...
- 3. ... and help by model-based design
- 4. Lessons learned
 - Methodology
 - Architecture

Lessons learned (Methodology)

Key for "low power/energy":

Sure all levels must be involved, but 2 things very useful

- 1. Very early power budgeting and estimation using functional models
- 2. Granularity of **infrastructure** for **power gating** (RFTS) or regulating (DVFS, AVFS) is key
 - Bottom up: determines standby power
 - Top-down: determines duty cycles
 - Important: Times for entering / leaving power states
 - Power converters
 - Clock generation (e.g. PLL)

Lessons learned (Architecture)

uC spend (too) much power/time for waiting, administrating peripherals! Benchmark developed:

Specifically optimized re-configurable ASIC: 200 -> 0.12 nJ [Glaser 2010]

Lessons learned (Architecture)

Don't wake processor for frequent, "simple" tasks:

Use of

- a) Simple, specific processor
- b) Re-configurable system, optimized for specific task

Specifically optimized re-configurable ASIC: **0.12 nJ [Glaser 2010]**

ReCoSoC: Design of Energy-Aware Cyber-Physical Systems