
Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	

Prof.	 Dr.	 Christoph	 Grimm	

	
Many	 thanks	 to:	 	
Markus	 Damm,	 Jan	 Haase,	 Javier	 Moreno,	 Thomas	 Herndl,	 Stefan	 Mahlknecht,	 Josef	
Wenninger,	 Sumit	 Adhikari,	 Carna	 Radojicic,	 Jiong	 Ou,	 Florian	 Schupfer,	 Florian	 Brame	 	

SoC	 PlaMorms	 for	 Cyber-‐Physical	 Systems	

(Picture:	 SINTEF/Infineon	 Austria)	

Cyber-‐Physical	 Systems,	 WSN,	 AI,	 IoT,	 ...	
Dependability,	 adapTvity,	 resilience,	
networking	 100.000s	 of	 nodes	 in	 focus.	
	
mobility,	 autonomy	 =	 	 LOW/ULTRA-‐LOW	 POWER?	 	

Progress	 in	 semiconductor	 technology:	
•  microcontroller,	 	
•  sensors,	 power	 electronics,	
•  RF	 interfaces,	 	

for	 complete	 systems	 in	 single	 package	 or	 chip!	 	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 2	

Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	

	
	
1.  Why	 Energy/Power-‐Awareness?	 	
2.  Challenges	 ...	
3.  	 	 	 ...	 and	 help	 by	 model-‐based	 design	
4.  Lessons	 learned	 	

–  Methodology	
–  Architecture	

	
	
	
	
	
	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 3	

Power	 Aware	 Design	 vs.	 Energy	 Aware	 Design	 	

Power	 Awareness	
§  Power	 peaks	 below	 limit	
§  Caused	 by	 switching	 acTviTes/capac.	 	
§  HeaTng,	 IR-‐Drop,	 crosstalk	
	
Energy	 Awareness	
§  Energy	 for	 task	 below	 limit	
§  Caused	 by	 leakage	 	
§  Enable	 long	 run-‐Tmes,	 autonomy	
	
Not	 independent!	 	
§  (Trivial:	 Power	 =	 Energy	 d/dt)	

§  Efficiency	 of	 power	 supply,	 ...	 	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 4	

Po
w
er
	

Time	

En
er
gy
	

Time	

Smart	 Systems	 ...	 (as	 seen	 e.g.	 by	 EPoSS	 for	 Europe	 2020)	 	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	

First	 generaHon:	 	
§  Sensing	 +actuaTon	
§  Signal	 condiToning,	

preprocessing	
§  CommunicaTon	 via	

bus	 interface	

Second	 generaHon:	 	
§  MulTfuncTonal	

sensing,	 actuaTon,	
inference	

§  PredicTve,	 adpaTve	
§  Networking,	

parTally	 autonomous	

Third	 generaHon:	 	
§  Self-‐calibraTng,	 	

self-‐healing	 	
§  ArTficial	 intelligence	
§  Self-‐organized	

network	
§  Energy	

autonomous	

Internet	 of	 things	
Smart	 home	
Smart	 grid	 	
Smart	 produc4on	

1990	 2005	 2020	

(Figure:	 BOSCH)	 (Figure:	 Infineon)	

5	

Energy	 HarvesTng	 OpportuniTes	 	
(e.g.	 in	 Automobile)	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 6	

GeneraHon:	
Passive	 RFID 	 	 0.1	 uW	 /	 cm2	 Antenna	
Photovoltaics 	 	 10	 uW-‐15.000	 uW	 /	 cm2	 	
AcTve	 RFID	 –	 AcTve	 	 up	 to	 4W,	 falls	 quadraTc	 with	 distance	
Thermal	 	 	 some	 W,	 increases	 with	 temperature	

ConsumpHon:	
CompuTng	 	 	 some	 uW	
Transmieng	 	 	 some	 mW	
Sensing	 	 	 	 	 (depends	 on	 kind	 of	 Sensor)	

	 	 	 	 	

Energy-‐aware	 design:	 	
GeneraTon	 depends	 on	 locaTon,	 scenario	
ConsumpTon	 depends	 on	 use,	 design,	 ...	

Smart	 Home,	 Smart	 Grid,	 	
Ambient	 Intelligence,	
e-‐Health	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 7	

Power	 DistribuTon	 Grid	

InformaTon	 Flow	

Smart	
Meter	

Gate-‐	
Way	

Energy-‐	
management	

Smart	 Home	 -‐	 Really	 Smart?	

Standby	 Power	 of	
Smart	 Building	

Today	 ...	 2015?	 Target	 for	 2020?	

1	 Node	 1	 	 ..	 10	 W	 100	 mW	 10	 mW	
10	 Nodes	 10	 ..	 100	 W	 1	 W	 100	 mW	
1000	 Nodes	 1	 ..	 10	 KW	 100	 W	 10	 W	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 8	

Standby	
Today‘s	 avg.: 	 	 1	 ..	 10	 W	
Today‘s	 best	 :	 	 	 100	 mW	
SmartCoDe‘s	 ZigBee: 	 50-‐90mW	
AmbiTous	 objecTve: 	 1	 ..	 10	 mW	

Number	 of	 Nodes	 (Home)	
LighTng 	 	 10-‐50	
Windows	 open? 	 10-‐20	
Doors? 	 	 10-‐50	
Scenario	 recogn. 	 20-‐50	
...	 sum: 	 	 10-‐100s	

Energy	 aware	 +	
Power	 aware	 design	
for	 efficiency	 of	 power	 converters!	

Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	

	
	
1.  Why	 Energy/Power-‐Awareness?	 	
2.  Challenges	 ...	
3.  	 	 	 ...	 and	 help	 by	 model-‐based	 design	
4.  Lessons	 learned	 	

–  Methodology	
–  Architecture	

	
	
	
	
	
	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 9	

Design:	 Hugo	 De	 Man	 (@Talk	 at	 60th	 Anniversary	 of	 Manfred	 Glesner	 ...)	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 10	

ApplicaTon	 development	

Circuit	 design	

„PlaWorm“,	 fixed	 API	

Solware	 centric	 systems	
(7th	 heaven?)	

Hell	 of	 nano-‐scale	 physics	

?	

ApplicaHon:	 usage,	 QoS	 requirements	
Network:	 MAC,	 rouging	
OS:	 power	 managent	 strategies	
Middleware:	 scheduling	 ressources	 	
	
	
	
	
	
Architecture:	 power	 gaTng,	 DVFS,	 ...	
Circuit:	 AdiabaTc,	 Sub-‐threshold,	 ...	 	
Technology:	 leakage	 power,	 capaciTes,	 ...	

Example:	 	
Advanced	 TPMS	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 11	

Power	 consumed	 in	
hardware,	
Baoery	 for	 days.	

Usage	 of	 hardware	 defined	 by	 	
-‐  Scenario	 &	 ApplicaTon	
-‐  CommunicaTon	 protocols	
-‐  Architecture	 	

Energy	 management:	
-‐  Know	 applicaTon	 and	 scenarios	
-‐  Develop	 power	 management	 strategy	
-‐  Match	 with	 RT-‐Level	 infrastructure	
-‐  Match	 with	 technology	

Solware	 centric	 systems	
(7th	 heaven?)	

Hell	 of	 nano-‐scale	 physics	

Challenge	 1:	 	
Power	 consumpTon	 ver4cally,	 EDA	 horizontally	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	

Needed	 for	 	
Power/energy	 aware	 design:	
	
	
	 	 	
ApplicaHon:	 usage,	 QoS	 requirements	
Network:	 MAC,	 rouging	
OS:	 power	 managent	 strategies	
Middleware:	 scheduling	 ressources	 	
Architecture:	 power	 gaTng,	 DVFS,	 ...	
Circuit:	 AdiabaTc,	 Sub-‐threshold,	 ...	 	
Technology:	 leakage	 power,	 capaciTes,	 ...	

Design	 today	
mostly	 horizontal	

12	

Challenge	 2:	 	
What	 is	 the	 cause	 of	 power	 consump4on?	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	

„Due	 to	 command	 to	 do	 X	 from	 network“	
	
„The	 solware	 running	 on	 the	 processor“	
	
	
„The	 processor/transceiver/...“!	 	
	
„Due	 to	 the	 physical	 scenario	 Y“	

13	

Physical	 interacTons,	 scenario	

Networking,	 coordinaTon	

Can	 EDA	 help?	

Short	 answer:	 	
NO.	
	
	 	 Unless	 you	 put	 all	 this	
	 	 in	 one	 formal	 model	 to	
	 	 enable	 overall	 system	 	
	 	 opTmizaTon!	
	
	
	
But:	 modelling/simulaTon	 is	 first	 step!	 	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 14	

ApplicaHon:	 usage,	 QoS	 requirements	
Network:	 MAC,	 rouging	
OS:	 power	 managent	 strategies	
Middleware:	 scheduling	 ressources	 	
Architecture:	 power	 gaTng,	 DVFS,	 ...	
Circuit:	 AdiabaTc,	 Sub-‐threshold,	 ...	 	
Technology:	 leakage	 power,	 capaciTes,	 ...	

Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	

	
	
1.  Why	 Energy/Power-‐Awareness?	 	
2.  Challenges	 ...	
3.  ...	 and	 help	 by	 model-‐based	 design	
4.  Lessons	 learned	 	

–  Methodology	
–  Architecture	

	
	
	
	
	
	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 15	

Model-‐based	 Approach,	 Concept	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 16	

	
	
ApplicaHon:	 usage,	 QoS	 requirements	
Network:	 MAC,	 rouging	
OS:	 power	 managent	 strategies	
Middleware:	 scheduling	 ressources	 	
	
Architecture:	 power	 gaTng,	 DVFS,	 ...	
Circuit:	 AdiabaTc,	 Sub-‐threshold,	 ...	 	
Technology:	 leakage	 power,	 capaciTes,	 ...	

Design	 issue	
modeled	
accurately	

Physical	 interacTons,	 scenario	

Networking,	 coordinaTon	

„Behavioural“	 model	

Model-‐Based	 Approach	 [Haase	 2012]	

+	 Means/tools	 to	
–  EsTmate	 power	 at	 verious	 levels	 of	 abstracTon	
–  Trace	 power	 consumpTon	 to	 its	 causes	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 17	

HAASE et al.: POWER-AWARE SYSTEM DESIGN OF WIRELESS SENSOR NETWORKS: POWER ESTIMATION AND POWER PROFILING STRATEGIES 603

Fig. 1. Abstraction levels of simulation in WSNs, from cycle accurate simulation to pure functional simulation. Simulators are classified in their predominant
level, although some of them permit cross-level simulation.

TABLE I
NETWORK SIMULATORS SUMMARY TABLE

were released. Table I outlines some of these tools, which are
briefly described in Sections IV-A–IV-I.

A. General Network Simulators

First, WSN simulators consisted on extensions for more gen-
eral network simulators.

One of those simulators was the network simulator ns-2 [23],
a very popular free discrete-event network simulator based on
REAL simulator [24].

ns-2 was not optimized for wireless ad-hoc networks. Scal-
ability was an issue as WSNs are usually large networks with
even more than thousand nodes. Modifications were made to
solve this issue. For instance, whenever a node sent a message,
all the other nodes received the signal, even when its strength
was so low that influence in communication was negligible: nei-
ther can these signals be received by those nodes nor contribute
to the received noise. A truncation algorithm which prevents
very far allocated nodes from receiving a signal was proposed
in [25], making ns-2 much more scalable.

While independent from ns-2 and not compatible, there is
a new simulator intended to be a new improved version and
eventual replacement of ns-2, named ns-3 [26].

The most important commercial general network simulator is
OPNET [27], which also includes a wireless library.

The best advantage of ns-2, ns-3, and OPNET tools is the
amount of protocol implementations which already exist, which
can be reused in new projects. However, apart from reusability
of algorithms and protocols, their performance is, in general,
poorer than in more specific simulators.

Besides, although it is possible to include new modules, they
are not conceived for hardware modeling, which is necessary to
estimate power consumption.

B. SensorSim

The first documented sensor network simulator was Sen-
sorSim [28]. It was based on the ns-2 simulation core. Due to
the high-level abstraction of ns-2, which is a general purpose
network simulator, SensorSim added specific models required
for sensor networks.

First, SensorSim was already concerned about power as a
restricting factor for WSNs deployment. Therefore, it added
power models for the hardware components.

Second, ns-2 applications are mostly generic traffic genera-
tors. SensorSim permitted simulating real applications as well
as interacting with real nodes (hardware-in-the-loop).

SystemC?	
with	 AMS,	 TLM	 ext.!	

e.g.:	 	
SYCYPHOS	
(SNOPS,	 SmartCoDe,	
ANDRES)	

SystemC	 +	 TLM	 +	 AMS	 extensions!	

	
	
	
	
	
	
	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 18	

SystemC	

SynchronisaTon	 Layer	

Methods,	 DSP,	
Analog/RF	

Dyn.	 Timed	 Data	 	
Flow	 (TDF);	

	

Macro	 Models	
DAE,	 H(s)	

Electr.	 Networks,	
Signal	 Flow	

SW	 and	 OS	
TransacTon	 Level	
Modeling(TLM);	
InstrucTon-‐Set	
SimulaTon	 of	

uP,	 uP	

C/C++	

So
lw

ar
e	

Di
gi
ta
l	 H

ar
dw

ar
e	

SystemC	 AMS,	 Modelling	 AMS,	 RF,	 Physical	 systems	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 19	

TDF	 Process	 FIFO	 FIFO	

t	 /	 ms	
0	 2	 4	 6	 8	 10	 12	 14	 16	 t	 /	 ms	 0	 2	 4	 6	 8	 10	 12	 14	 16	

processing()	
{	
	 	 out.write(…)	
}	

discrete	
Process	

R	 C	

electr.	 network	

out	 =	 f(in)	

H(s),	 H(z),	 DAE	

Modelling	 CommunicaTon	 with	 TLM	

TLM	 2.0	
§  Models	 communicaTon	

via	 buses	
§  Abstracts	 data	 granularity	 	

(“payload”),	 Tming	 accuracy	
	
Wireless	 TLM	
§  Route	 of	 packet	 in	 a	 WSN:	 	

forks,	 dead	 ends,	 …	
§  Modeling	 “air”:	 	

reflecTons,	 obstacles,	 etc.	 for	
wireless	 transmissions	

Initiator 1 Target 1

Initiator 2

I n t
 e r c

 o n
 n e

 c t 1

I n t
 e r c

 o n
 n e

 c t 2

Target 2

Target 3

Target 4

Target 5

SN 1

SN 3

SN 4

SN 2
SN 5

SN 7

SN 8

SN 6
SN 9

SN 10 SN 11

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 20	

WSN	 extensions	 for	 the	 TLM	 2.0	 generic	 payload	
[Damm	 2009,	 2010]	

GP
target 5
data 1 . 5

ENV - EXT
route - adr 3
strength 7 . 5

1
GP

target 5
data 1 . 5

NODE - EXT
route - adr 3
strength 0 . 9
route - adr 3
strength 0 . 3

2
3

ENV - EXT
route - adr 3
strength 7 . 5

2
GP

target 5
data 1 . 5

NODE - EXT
route - adr 3
strength 0 . 9
route - adr 3
strength 0 . 3

2
3

ENV - EXT
route - adr 5
strength 6 . 3

3

NODE - EXT
route - adr 3
strength 0 . 9
route - adr 3
strength 0 . 3
route - adr 5
strength 0 . 7
route - adr 5
strength 1 . 1

2
3
4
5

GP
target 5
data 1 . 5

ENV - EXT
route - adr 5
strength 6 . 3

4

SN 1 Environ -
ment

1
Environ -
ment

3

SN 2

SN 3

2

2

SN 4

SN 5
4

4
Packet	 sent:	
Updated	 by	 node	
before	 it	 passes	 	
transacTon	 to	
environment.	

Packet	 from	 „Air“	
Updated	 by	 	
environment	 before	 it	
passes	 transacTon	
to	 nodes	
• 	 received	 signal	 quality	
• 	 rouTng	
• 	 power	 used	 for	 task	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 21	

Power	 Profiling	 (1)	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 22	

run	
Pr	 [W]	

sleep	
Ps	 [W]	

Power	 state	 machine,	
Power	 states	

Transceiver:	

...	
set_psm_state(run)	
...	
...	
set_psm_state(sleep)	
...	

Power	
logfile	

Power	 Profiling	 [Haase	 2011]	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 23	

M2M	
Commands	

TransacTon	
A-‐>B:	 Get	 Pressure	 ……………..	

SW	
Ac4vi4es	

Listening	 Receiving	 Sensing	
(Re-‐)	
Trans-‐	
mieng	

……	

Components	 µP	 ISS	
(Power)	

Transceiver	
(Power)	

Sensor	
(Power)	

………………	

Power	 models	 from	 SNOPS/SYCYPHOS	 library	

Power	
Logfile	

Architecture	 ExploraTon:	 Non-‐ideal	 Behavior	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 24	

rf_sig d_in

DSP Alg.
Demodulation
Clock recovery Bits

loc_osc

if_sig

mixer

agc_ctrl

gain

lp_filter_tdf

ctrl_config

Frontend

VCO

Software
Applikation

Phy-App Layer

28

2.9 LNA (Low-noise amplifier)
This class amplifies an input signal with a certain gain. User can set the gain with the
parameter _gain. This class also allows user to model the intercept modulation of
LNA. With the parameter “_ideal” user can switch between an ideal and a non-ideal
LNA module. The IP3 point can be set with the parameter _ip3.

Class definition: lna(sc_core::sc_module_name n, double _gain, double _ip3, bool

_ideal);

Interfaces: sca_tdf::sca_in<double> in;
 sca_tdf::sca_out<double> out;

Parameter Type Default value Description
n sc_module_name -
_gain double - gain in dB
_ip3 double - IP3 in dBm
_ideal bool - true for simulation of

ideal LNA, otherwise false

2.10 Mixer
This class converts the input signal from low frequency to high frequency or vice
versa. User can set the gain of mixer with the parameter _gain (default equals 1).
This class also allows user to model the intercept modulation of mixer. With the
parameter “_ideal” user can switch between an ideal and a non-ideal LNA module.
The IP3 point can be set with the parameter _ip3.

Class definition: mixer(sc_core::sc_module_name n, double gain, double ip3,

bool _ideal)

Interfaces: sca_tdf::sca_in<double> sig_in;
 sca_tdf::sca_in<double> lo_in;
 sca_tdf::sca_out<double> out;

f_jioer-‐Jioer	 of	 VCO	

Complete	 model	 with	 assumed/measured	 parameters!	

Architecture	 ExploraTon:	 Power	 Management	

ExecuTon	 of	 TDF	 processes	 controlled	 by	 clk/enable	 signals	
(events),	 SW	 by	 Interrupts	 (events)	

	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 25	

rf_sig d_in

DSP Alg.
Demodulation
Clock recovery Bits

loc_osc

if_sig

mixer

agc_ctrl

gain

lp_filter_tdf

ctrl_config

Frontend

VCO

Software
Applikation

Phy-App Layer

Control & Power Management

InterruptClk,	 EnablePowerDown

sca_tdf::sc_in<bool>	 	 clk;	

next_acTvaTon(clk.pos());	

rf_sig d_in

DSP Alg.
Demodulation
Clock recovery Bits

loc_osc

if_sig

mixer

agc_ctrl

gain

lp_filter_tdf

ctrl_config

Frontend

VCO

Software
Applikation

Phy-App Layer

µP
 Memory

Protocol
Processor
ASIC, DSP

Architecture	 ExploraTon:	
X-‐Domain	 parTToning	

Add	 InstrucTon	 Set	 Simulator(s)	 	
of	 processors	 to	 be	 used	

	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 26	

Control & Power Management

InterruptClk,	 EnablePowerDown

Processing()	
{	 …	 };	

Example:	 Power	 profiling	 of	 	 TPMS	 with	 In-‐Car	 WSN;	
18	 8-‐Bit-‐uC	 with	 Firmware	 +	 Transceiver	 +	 Sensors	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 27	

Example:	 Power	 profiling	 of	 	 TPMS	 with	 In-‐Car	 WSN;	
18	 8-‐Bit-‐uC	 with	 Firmware	 +	 Transceiver	 +	 Sensors	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 28	

(Video	 showing	 Driving	
scenario	 and	 esTmated	
power	 assigned	 to	
processors,	 analog/RF,	
Sensors,	 SW	 acTviTes,	
TransacTons	 ...)	

Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	

	
	
1.  Why	 Energy/Power-‐Awareness?	 	
2.  Challenges	 ...	
3.  	 	 	 ...	 and	 help	 by	 model-‐based	 design	
4.  Lessons	 learned	 	

–  Methodology	
–  Architecture	

	
	
	
	
	
	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 29	

Lessons	 learned	 (Methodology)	

Key	 for	 „low	 power/energy“:	
Sure	 all	 levels	 must	 be	 involved,	 but	 2	 things	 very	 useful	 	
1.   Very	 early	 power	 budgeHng	 and	 esTmaTon	 using	 funcTonal	 models	
2.  Granularity	 of	 infrastructure	 for	 power	 gaHng	 (RFTS)	 or	 regulaTng	 	

(DVFS,	 AVFS)	 is	 key	
–  Booom	 up:	 determines	 standby	 power	
–  Top-‐down:	 determines	 duty	 cycles	
–  Important:	 Times	 for	 entering	 /	 leaving	 power	 states	

•  Power	 converters	
•  Clock	 generaTon	 (e.g.	 PLL)	

	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 30	

Lessons	 learned	 (Architecture)	

uC	 spend	 (too)	 much	 power/Tme	 for	 waiTng,	 administraTng	 peripherals!	
Benchmark	 developed:	 	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 31	

implementations of a sensor interface are examined. This
is followed by a description of the proposed approach.
This work is finished by a conclusion and outlook to future
work.

2 Related Work

In [3] we investigated the power consumption of the sen-
sor interface application mentioned above for several mi-
crocontrollers, as a hard-coded hardware block, and with
the novel reconfigurable hardware architecture.

The power consumption of five different low-power mi-
crocontrollers with 8- or 16-bit RISC CPUs was investi-
gated. The sensor control is implemented as a common
C function for every chip. The execution times were cal-
culated from counting the assembler instruction execution
cycles and dividing by the operating frequency. For the
waiting periods constant values were assumed. The power
consumption was estimated by using typical data sheet
values at 4 MHz and 25 �C.

The hardware implementations were realized with an
FPGA (field programmable gate array) instead of produc-
ing of a chip. Note the stack of reconfigurability, where
the underlying technology (FPGA) is reconfigurable and
the implemented circuit itself is reconfigurable too. Due
to the usage of a commercially available FPGA instead of
a full- or semi-custom chip design, no optimized multi-bit
cells were implemented.

The two FPGA implementations only differ in the state
machine (FSM) type. In the reconfigurable implementa-
tion a Block RAM is used while the other one uses a hard-
coded state machine. The difference in current consump-
tion is therefore mostly caused by the Block RAM which
offers several different configurations, layouts, and wrap-
pers which adds overhead in power consumption. Besides

this overhead both FPGA implementations comprise over-
head due to the fine granularity of the logic functions for
the data-path oriented tasks as well as for the routing on
the FPGA chip.

The energy consumption values of a single sensor mea-
surement performed by the different implementations are
summarized in Figure 1. While the microcontroller im-
plementations only differ slightly (189.15 nJ to 266.22 nJ
with an average of 219.08 nJ and a range of 35.2 %), the
difference to the hardware implementations is tremendous
(2.09 nJ and 5.61 nJ). The five bars for the microcontroller
implementations are divided into the individual compo-
nents (e.g., wakeup, interrupt latency, context save, ...).
The FPGA implementation only consists of the function
part because it doesn’t require any microcontroller related
tasks.

Compared to the lowest power microcontroller
MSP430F5418, the hardcoded state machine implementa-
tion in the FPGA requires over 90 times less energy. The
two hardware implementations differ by a factor of ⇡2.7
with the reconfigurable implementation requiring more
energy. But even this requires nearly 34 times less energy
than the MSP430F5418.

Due to the different semiconductor processes and the
underlying architectures of the FPGA and the microcon-
trollers the comparison is inaccurate. A fair comparison
would require to implement both, a low-power microcon-
troller core and the sensor interface, on a common chip.
However, due to the high overhead of the FPGA imple-
mentation the total energy per sensor measurement of the
hardware implementation will decrease even further. On
the other hand, the firmware implementation will not ex-
perience such a large reduction because optimized low-
power microcontrollers were used. So the difference be-
tween these two implementations will further increase,
which strengthens the optimization potential

n
J

0

50

100

150

200

250

300

MSP430F1232
MSP430F2232

MSP430F5418
PIC16LF72x

ATmega88PA
FPGA Hardc.

FPGA Reconf.

191.48

222.63

189.15

266.22

225.90

2.09 5.61

ADC Conversion
Sensor Settle
Return
Context Restore
Function
Call
Determine Source
Context Save
Interrupt
Wakeup

Figure 1. Energy consumption of one sensor measurement performed by different implementations. The first five bars
represent the results of microcontroller implementations, broken down by contributing facility. The right two bars show
the consumption of two FPGA implementations, once with a hard-coded FSM and once with a reconfigurable FSM.

Specifically	 opTmized	 re-‐configurable	
ASIC:	 200	 -‐>	 0.12	 nJ	 [Glaser	 2010]	

Lessons	 learned	 (Architecture)	

Don‘t	 wake	 processor	 for	 	
frequent,	 „simple“	 tasks:	 	
	
	
	
	
	
Use	 of	
a)  Simple,	 specific	 processor	
b)  Re-‐configurable	 system,	 	

opTmized	 for	 specific	 task	
	

ReCoSoC:	 Design	 of	 Energy-‐Aware	 Cyber-‐Physical	 Systems	 32	

3 Reconfigurable Architecture

Starting from the above findings, we propose to introduce
reconfigurable hardware blocks to a WSN SoC (see Fig-
ure 2) which independently conduct simple sub-tasks in-
stead of the CPU. The CPU is only activated if any further
(more complex) processing is required. Therefore these
logic blocks act as a “filter” for these events.

3.1 Using Reconfiguration
Shifting the border in a software/hardware partitioning
process towards hardware reduces the flexibility of the fi-
nal application. While software can be modified by re-
programming the code memory, synthesized logic cores
require a redesign of the chip. Hence, there are three im-
portant reasons for flexibility:

1. Covering multiple different applications for a higher
market potential.

2. Adopting to different external components across
PCB design cycles.

3. Fixing bugs without a chip redesign.
Therefore we propose to make the introduced dedicated
hardware blocks reconfigurable.

In contrast to FPGA cores (e.g., [4]), which consist
of fine-grained structures optimal for control dominated
functions, we propose to also support multi-bit logic
blocks and a multi-bit routing architecture for computa-
tional functions. The high overhead is outlined with the
following example. The Xilinx Virtex FPGA architec-
ture requires 864 bits of configuration for every config-
urable logic block (CLB) [5] (48 frames per column ⇥ 18
bits per row). We estimated the number of configuration
bits required for only the logic function of one CLB to be
86 by counting the configurable LUTs and multiplexers
(MUXes). From these numbers it is clear that the logic
itself is configured by only 10 % of the configuration bit
stream while 90 % account for the connections and rout-
ing. To avoid this high overhead, [6] proposes a multi-bit
routing architecture which utilizes the inherent regularity
of logic vectors.

To further reduce the power consumption and area re-
quirement, the proposed approach requires the user to
define an application class for which the reconfigurable
block is inserted. This class describes the field of planned
actual applications. Then the reconfigurable logic block
is developed to be tailored to provide exactly those struc-
tures which are required to implement any of the desired
applications. After the manufacturing of the SoC, the ac-
tual application is specified and implemented by configur-
ing the reconfigurable block accordingly.

3.2 Components
Our approach includes concepts for the instantiated cells
(multi-bit combinational and sequential cells, reconfig-
urable cells), the reconfigurable routing between these
cells, interfaces of a block to other modules of the SoC, re-
configuration storage and interface (see Figure 3), as well
as tools to assist the developer.

FSM

|A−B|
>

P

Config

Param

Bus

Intr

Reset

Clk

Figure 3. Internals of a reconfigurable hardware block
(Intr: Interrupt, Clk: Clock, Config: configuration in-
terface, Param: parameterization interface, |A � B|:
absolute difference calculation, >: integer compari-
son, P: parameter register).

3.2.1 Cells

For the reconfigurable logic blocks a library of cells is
developed. These include typical standard library cells
(logic functions and registers) as well as multi-bit cells
(e.g., shifters, arithmetic functions), “tactical cells” [7]
(e.g., absolute difference, finite state machines, shift reg-
isters, CRC generators, timing generators), reconfigurable
cells (lookup tables, sum-of-product cells) and infras-
tructure cells (e.g., routing switches, interface blocks,
parametrization registers and especially the configuration
chain).

3.2.2 Routing

FPGAs provide rich resources for signal routing between
the individual logic blocks. In contrast to FPGAs the pro-
posed approach involves an irregular topology as well as
multi-bit lanes. It is crucial to include a proper set of rout-
ing resources tailored to the desired application class to
provide a high degree of flexibility in the final design.

3.2.3 Interfaces

Depending on its application class, every reconfigurable
logic block requires different interfaces to other peripher-
als like ADC, I2C bus, SPI bus, RF transceiver and mem-
ory (via an on-chip bus or direct signals). The CPU is
informed of an important event via an interrupt interface.
Finally, every block needs clock and reset signals.

3.2.4 Reconfigurability

Two main areas provide reconfigurability: Firstly the rout-
ing switches have to be configured to properly connect the
individual cells. Secondly certain cells themselves can

Test Chip MCU 1 MCU 2

MCU & FPGA

S
e
ri

a
l

B
u

s
s
e
s

Crossbar Switch

Current

MeasurementMeasurement

CurrentCurrent

Measurement

PC

Figure 11. Evaluation platform overview. The test chip is con-
nected via a crossbar switch to the MCU and FPGA evaluation
device. This is controlled via a PC.

MCU Module SocketCurrent Measurement

Chip

Test

Switch

Crossbar

to PC

Connection

Actel SmartFusion FPGA

Serial
Busses

Figure 12. Evaluation platform photo.

low-power microcontrollers was investigated too and resulted in an
average of 219.08 nJ per sensor measurement. So, our approach
reduces the power consumption by a factor of nearly 1,900.

Due to the adaption of the reconfigurable sensor interface module
for the test chip (see Sec. 5.1) the signal paths go via large multi-
plexers with high fan-out nets which consume considerable switch-
ing power. This power is included in the measurement results and
can not be corrected mathematically. Secondly, the chip was pro-
duced in an automotive-qualified general-purpose 130 nm CMOS
which is not optimized for low-power applications. Including the
presented approach in a SoC which is produced in a special ultra-
low-power process (like the compared microcontrollers in [4]) will
therefore further reduce the power consumption. Both annotations
show, that the presented results are an upper bound for the cur-
rent consumptions and therefore a lower bound for the potential
for power reduction.

Figure 13. Average energy consumption per sensor measurement
performed by different implementations: firmware for five dif-
ferent microcontrollers, reconfigurable logic in an FPGA and re-
configurable logic as presented in this work by a test chip.

7 Conclusion
This paper discusses the methodology for designing reconfigurable
logic modules for WSN nodes. These are placed additionally to
the CPU into a WSN node SoC and autonomously perform tasks of
moderate complexity. Due to the reconfigurability of every mod-
ule, its functionality can be adapted flexibly. By relieving the CPU
from these tasks, it will remain in an inactive low-power mode for
extended periods which leads to fundamental power reductions.
Every reconfigurable logic module is specifically tailored to the ap-
plication class of its operational area. In the pre-silicon phase the
reconfigurable resources including the routing are specified. After
chip production, i.e. in the post-silicon phase, the actual application
is specified. The configuration is derived from the application de-
scription and mapped to a configuration bit stream. This is applied
to the reconfigurable circuitry and so configures it to implement the
application logic. The objective is to reduce power consumption
while maintaining a high degree of flexibility for the implemented
applications.
The methodology was demonstrated by realizing a hardware imple-
mentation of a reconfigurable sensor interface as test chip. A reduc-
tion of power consumption by a factor of nearly 2,000 compared to
a traditional firmware implementation clearly shows the potential
of the approach. Compared to the usage of a commercial FPGA ar-
chitecture to implement reconfigurable modules a reduction of the
power consumption by a factor of 18 was achieved. This proofs the
advantage of limiting the flexibility to a defined application class.
The evaluation showed some drawbacks, which primarily stem
from the utilization of a standard cell library. The architecture
contains multiplexers with a high number of inputs (esp. signal
switches) which considerably increase the area, delay, and switch-
ing power of the circuit. This will be improved by the use of trans-
mission gates connected in heterogeneous trees [29] and incorpo-
rating interconnect parasitics [30, 31]. Future work will also be
done on reconfigurable routing, development of multi-bit cells and
improvements of the tool chain to ease the implementation of re-
configurable hardware modules.

References
[1] H. Karl and A. Willing, Protocols and Architectures for Wire-

less Sensor Networks. Wiley, 2005.

[2] J. Glaser, J. Haase, M. Damm, and C. Grimm, “A Novel

uC	

PPU	 uC	 FPGA	

Specifically	 opTmized	 re-‐configurable	
ASIC:	 0.12	 nJ	 [Glaser	 2010]	

