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Technology (R)Evolution !
System-on-Board System-on-Chip• Fabrication technology evolution

– Integration of systems with billions of 
transistors in only one chip

– Hundreds and even thousands of 
components

– Moore’s law is for ever ?

• Multi-Core Systems
- Performance

• Power dissipation issues and clock 
skews limit clock frequency

• Parallelism
- Power Consumption

• Simple Cores
• Power down idle cores

- Rapid Design
• Reuse repeated tiles into common 

infrastructure

Today, 256+ cores
is a reality

ITRS 2011 Update

Transistor, 1947
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• Key role of communication infrastructure
– Bus: shared medium, broadcast all
– NoC: data travels along a path,

many active concurrently

Scalability !
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Clock Distribution

Clock Source

• Deep Submicron Technologies
– Aggravation of physical problems 
– Predominant effect of long wires on delay 

and consumption

• Nightmare of Global Synchronization
– Global distribution of single clock 

signal over chip impossible
– Clock skew claiming larger relative 

part of total cycle time
– Clock distribution network 

demanding increasing portions of  
power and area budgets

– Fabrication Process Variation 
– Temperature Variation

Source: ITRS
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• Reducing the Problem to a number of smaller 
Sub-Problems
– Several Independent Clock/Voltage Clusters

• Networks-on-Chip as a 
Structured Approach
– The network: Globally 

Asynchronous part

– Subsystems: Locally 
Synchronous parts 

GALS/DVFS Paradigm, Prominent Solution

CK0 / V0

CK1 / V1

CK4 / V4
CK5 / V5

CK3 / V3

CK6 / V6 CK7 / V7 CK8 / V8

CK2 / 
V2
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• How separated synchronous domains can robustly 
communicate together?
– Transferring data between different frequency domains 

requires safe synchronization

– Metastability, unavoidable state of bistable devices, is a 
major concern

BUT …

Metastable

StableStable

Unstable Unstable

Metastable
Susceptible Time 

Window

t

B

1

Metastable State
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• Reduces the need for synchronization
– In Network Interface Controller only: 2DFFs to resolve 

metastability
– Local Frequency and Voltage control possible (VFI for DVFS)

• Reusability in a Plug-and-Play Fashion

• Almost Zero Idle Dynamic Power Dissipation

• As Fast as Possible
– Global Timing Independence

• Scalability
– Cluster Size Independence

Asynchronous NoC, A Viable Solution

Asynchronous Circuit

CK0 / 
V0 CK1 / 

V1

CK5 / 
V5

CK3 / 
V3

CK6 / V6 CK8 / V8

CK2 / 
V2

CK4 / V4

CK7 / V7
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• Fully asynchronous architecture for the network

• Synchronous compliant interfaces
– Synchronous-to-Asynchronous FIFO
– Asynchronous-to-Synchronous FIFO

Asynchronous NoC
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Distributed Router
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Asynchronous design in a nutshell

Req

Ack

Data
Sender Receiver

(Target)(Initiator)

Local handshake instead of global clock

Data availability triggers the computation:
wait for valid inputs

output = f(inputs)

complete input transactions

wait for output ready to receive 
send output

complete output transaction

x N
Data

Ack

Req

1st Handshake 2nd Handshake

4-Phase protocol
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Asynchronous design in a nutshell

Dual-Rail coding: simplest delay insensitive code

Data = 0 Data = 1

00

01 10

1 1 0 1 0
0 0 1 1 0

Bit1
Bit0

Wire1 of Bit0

Wire0 of Bit0

Wire1 of Bit1

Wire0 of Bit1

Ack

Signaling required to minimize delay assumptions,
e.g. between Data and Request

=> Embed Request into Data

Completion detection indicates computation done:
Ack <= Wire0 or Wire1
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Asynchronous Design Cells (Muller gates)
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• STMicroelectronics CMOS 90nm GPLVT
• A boundless throughput of connected block as a Hypothesis 

for throughput measurement

Experimental Results

Type Transistors Surface Min Latency Max Latency Max Throughput 

2-Place SA_FIFO 1338 1422 μm2 177 pS 2.39 GEvents/S

3-Place SA_FIFO 1969 2054 μm2 207 pS 2.36 GEvents/S

8-Place SA_FIFO 5126 5215 μm2 219 pS 2.22 GEvents/S

2-Place AS_FIFO 1388 1452 μm2 271 pS + T 271 pS + 2T 1.50 GEvents/S

3-Place AS_FIFO 1942 2011 μm2 247 pS + T 247 pS + 2T 2.61 GEvents/S

8-Place AS_FIFO 5054 5107 μm2 263 pS + T 263 pS + 2T 2.89 GEvents/S

6-Place SS_FIFO 2985 2940 μm2 362 pS + T 362 pS + 2T 2.61 GEvents/S

8-Place SS_FIFO 3956 3869 μm2 366 pS + T 366 pS + 2T 4.60 GEvents/S
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Asynchronous NoCs
Academic work:
• ANoC, CEA-LETI , 2005, 130 nm (actual chip)
• Alpin, CEA-LETI, 2007, 65 nm (actual chip)
• QNoC, Technion, 2004
• Mango, TU Denmark, 2005, 120 nm
• ASPIN, LIP6, 2008, 90 nm
• Hermes, PUCRS, 2010, 65 nm
• …
Industrial outcome:
• ANoC used in STMicro manycore platform

STHorm (2012, 28 nm)

Source: E. Beigné, CEA-LETI
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• As population grows, tendency to build vertically 
rather than horizontally
– Increase the density

• Land more and more expensive
– Decrease the length and the number of long paths

• Average time and energy for moving from one point to 
another unaffordable

– However new methods required for going Up & Down!

… when the population grows!
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Three-Dimensional Integration
System-on-Board System-on-Chip

no External Connections

Large Die

* Ability to Integrate 
Different Dies with 

Different Technologies 
in a Same Package

*James Lu

2.5D

3D

PCB/SiP with 
wire bonding
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• Today 2.5D is here:

Three-Dimensional Integration

Clive Maxwell, EETimes

Tiny bumps pitch ~10 µm

Bumps pitch ~100 µm

Kirk Saban, Xilinx,
Virtex-7 white paper

BGA  pitch ~600 µm
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• Tomorrow, true 3D using TSVs?
– ITRS 2011 update predictions

Three-Dimensional Integration

2011-2014 2015-2018

TSV diameter 4-8 µm 2-4 µm

TSV pitch 8-16 µm 4-8 µm

TSV depth 20-50 µm 20-50 µm

Number of tiers 2-3 2-4

3D
Courtesy Ivan Miro Panades
CEA-LETI
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The Third Dimension
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How Many Layers?

900 PEs
2018
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Through-Silicon-Via

TSVs• Via-First (higher density of TSVs)
– Diameter ≈ 5 µm
– Pitch ≈ 10 µm
– Depth ≈ 20-50 µm

• The most promising Technology of 
Vertical Interconnection

– Low Resistance and Capacitance
• High Bandwidth
• Low Power Consumption

• Via-Last (lower cost of the process)
– Diameter ≈ 35 µm
– Pitch ≈ 50 µm
– Depth ≈ 40-150 µm

*I. Loi et al.

Via First, Polysilicon filled
Source : G. Pares / CEA-LETI

Via Middle, Cu filled
Source : D.Y. Chen, 
TSMC/IEDM 2009

Via Last, Cu liner
Source : Allvia, 2011
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…but, is there any problem ?
• Large area overhead because of large TSV pitch, mainly due to 

large pads to compensate misalignment of dies
• Guard zone to active area, ESD protection and level shifters 
• Important risk of failure due to several additional fabrication step

– Misalignment
– Dislocation
– Void formation
– Oxide film formation over

Copper interfaces
– Pad detaching
– Defects due to temperature
– …

Three-Dimensional 
Integrated Circuits               

are limited by the number 
of TSVs to be exploited

*C. Seiculescu et al.
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Clock Distribution in 3 Dimensions

* E. G. Friedman, V. F. Pavlidis

• Skew less distribution of 
clock across dies unrealistic

• Batch and chip variability
• Technology heterogeneity

• Distribution of power is an 
issue too!
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Asynchronous 3D-NoC

IP
Local Interconnect

NIC

Async/Sync Interface

Asynchronous Network

CK0

CK1

CK2

CK3

CK4

CK5

• Insensitive to delay variation due to temperature or 
process variation

• Exploitation of the whole (high) 
bandwidth of TSVs

• Speed ratio of 2 as a 
worst-case assumption

– Using STMicroelectronics 90nm GPLVT 
transistors, 400MHz as the maximum clock 
frequency of usual SoCs

– Using the same technology, 1100 Mflits/s 
as throughput of an asynchronous NoC
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… why not Serialized Vertical Links!

• Remembering
– Using TSVs guarantees faster vertical data transfer with lower power 

consumption than horizontal links of moderate size
– but, pitch of TSVs large, several additional steps of TSV fabrication 

add potential yield reduction 
– Only small fraction of vertical link capacity exploited in a 3D-NoC
– Large number of physical connections for each link 

of the router 

Router
Through-Silicon-Via
Serializer
Deserializer

• Serialization of data on TSVs is a trade-off 
between the cost and the performance 
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Vertically Serialized Asynchronous 3DNoC
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Circuit Implementation
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• Horizontal Link Throughput: 710 Mflits/sec
• Router Throughput : 1100 Mflits/sec
• Inter-Core wire (2mm) delay : 125 ps

• Serialized (8:1) Vertical Link Throughput:  2080 Mflits/sec
• Serialization Throughput: 2500 Mflits/sec
• TSV delay: 20 ps

• Speed ratio : (710*32)/(2080*4) = 2.73 (and not 8 !)

SPICE Simulation Results

Self-Controlled 
Multiplexer 2:1

Self-Controlled 
Demultiplexor 1:2 Serializer 4:1 Deserializer 1:4 Serializer 8:1 Deserializer 1:8

Transistor 
count 130 132 390 396 910 924

Latency 80 ps 70 ps 150 ps 130 ps 220 ps 190 ps
Throughput 2.9 Gflits/sec 3.2 Gflits/sec 2.5 Gflits/sec 2.8 Gflits/sec 2.5 Gflits/sec 2.8 Gflits/sec
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Self-Controlled Multiplexor

* French Patent  09/53637
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Signal Transitions

Reqi0 + I0 +

Req0(Acki0) + Reqo +

Reqi0 - R - Acko +

I0 -

Req0(Acki0) - Reqo -

Acko -

Reqi1 +I1 +

Req1(Acki1) +Reqo +

Reqi1 -R +Acko +

I1 -

Req1(Acki1) -Reqo -

Acko -
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MD TSV HD TSV 65 nm 32 nm

Parallel 0.4 mm² 0.016 mm² 0 mm² 0 mm²
Serial x2 0.2 mm² 0.008 mm² 0.012 mm² 0.0039 mm²
Serial x4 0.1 mm² 0.004 mm² 0.016 mm² 0.0056 mm²
Serial x8 0.05 mm² 0.002 mm² 0.019 mm² 0.0067 mm²

Serialization Cost Analysis

Parallel 
Serial x2 

Serial x4
Serial x865 nm M

D TSV

32 m
n M

D TSV

65 nm HD TSV

32 nm HD TSV

1,0E-03

1,0E-02

1,0E-01

1,0E+00
Total
Area

(mm²)
VLSI integration by

Latency of Ser+TSV+Des: 2.0 ns in 65 nm
Power: 15 mW (identical to router power)
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Objectives
• Impact of “DRAM on Logic” stacking from the NoC

Performance-Cost viewpoint

• 3DSoCs with DRAM die(s) on top of the NoC
– Best-effort, Wormhole NoCs
– Average performance of the system is addressed

• Distribution of a limited buffering budget between NoC
links at design time in order to improve system average 
performance.   

ObjectivesMemory on Logic in 3D-NoCs
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• External DRAM pad in classic shared memory MPSoCs creates a 
drastic hotspot in the SoC and becomes the main bottleneck of 
the system 

• Congested DRAM interface  retro-propagation of traffic
 Congestion tree Saturation of the whole SoC

• Significantly Deteriorates  the average performance  in terms of  
latency and throughput

External DRAM: Bottleneck of the System

DRAM

Congestion Tree 
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• Saturation threshold: maximum load accepted by the network

• Average Latency / Offered Load  curves

NoC Average Performance

Example curves for a 5x5x5 mesh with i% missing vertical links
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Issue: Hotspots & NoC Performance Degradation

Av
er

ag
e 
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te
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y 

(c
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)

NoC Saturation Threshold (ST)

Uniform Traffic:  ST=~45%

10% Hotspot Traffic :ST=~11%  
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• One of the major benefits of 3D technology: DRAM/Logic stacking in 
a single chip (vs. traditional off-chip DRAMs)

• TSVs offer wide and fast vertical interfaces between logic and DRAM, 
e.g.  Wide I/O :
– 4x128-bit interfaces (4 channels), 200 MHz I/O bus clock
– Total peak bandwidth of 12.8GB/second (3.2GB/second/Channel)

• NoC and DRAM-port work approximately with the same throughput

• DRAM port is not anymore the major bottleneck of the SoC

• Saturated link buffers  retro-propagation of traffic  Saturation of 
the whole SoC

Stacked DRAM
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• Assignment of large buffers to network links can 
significantly enhance the NoC saturation point  

Buffers Sizing at Design Time 

15 flit
3200 flit
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• More than 80% of the area of a router belongs to its buffers

Buffers are Costly 

 Therefore, an efficient buffer dimensioning method is required to deal with the
tradeoff between NoC cost and performance.

8-flit Buffer
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Cluster (Y, X)

Cluster(Y-1, 
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Example: 5% of hotspot traffic vs. 25% of  hotspot traffic (ZXY routing 
algorithm, 8 flits buffer length, uniform background traffic)

Detection of Bottleneck Links 

h=5% h=25%

1. Architectural parameters: e.g. NoC topology, routing algorithm, 
buffer lengths

2. Traffic Parameters: e.g. number and location of memory 
controllers, hotspot fraction  
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• Initial analysis to identify network saturation point: assumes 
almost infinite buffers, i.e. 3200 flits

• Determine average utilization for every buffer b 
(Utilization(b)) at load (ST – epsilon)

• Compute normalization factor:
F = (Maxlen – Minlen)/Bottleneck
– Maxlen, Minlen: size of largest and smallest buffer (designer choice)
– Bottleneck: maximal observed buffer utilization (given by simulation)

• Normalize buffer size:
Size(b) = Utilization(b) * F + Minlen

Buffer Sizing Approach
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• Assignment of buffers between 4 … 320 flits to each 
link in 5x5x3 mesh wormhole NoC

• Wide IO memories with 1 or 4 ports
• Number of large buffers is very limited

– Only 24 links out of 340 have buffers greater than 32 flits

• Resulting average buffer length: 14.67 flits

Buffer Sizing Approach: Cost Analysis

Buffer 
Length 4 5 6 7 8 9 12 13 14 17 18 19 20 21 22 23 26 36 39 42 43 48 58 59 97 98 128 131 318 319 320

Number 
of links 
(4 ports) 

- 124 46 46 12 46 10 - 4 3 4 13 1 4 2 1 - 1 3 2 2 4 2 2 - - 1 3 1 2 1

Number 
of links 
(1 port)

328 - 4 - - - - 2 - - - - - - - 1 2 - - - - - - - 1 1 - - - - 1
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Significant growth in 
saturation point with 
the same cost as a15-flit 
buffer/link everywhere 

Cost/Performance Comparison 

Buffer Length (flits) Cost Performance
8 (reference) 1 1

15 1.87 X 1.07 X
3200 400 X 1.92 X

Average 14.67  (4~320) 1.83 X 1.79 X

15 flit 3200 flit

Average: 14.67 flit

Reference
8 flit
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Vertically-Partially-Connected 3D-NoC !

• Limited number of vertical connections (TSVs)
• Network with different dies fabricated with different technologies

– Heterogeneity
– Irregularity

• Vertically-Partially-Connected Topology as an efficient solution
– Routing strategy in such an irregular topology is the major problem

2D-Router

3D-Router
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• Each router registers
– A router in its layer with UP link as 

ascending elevator
– A router in its layer with DOWN 

link as descending elevator

Elevator-First Routing Algorithm
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• Two Virtual Networks in the plane to avoid deadlocks
– One for ascending packets (Z+)
– One for descending packets (Z-)
– Ascending vertical links are Z+
– Descending vertical links are Z-

… and … Deadlock !
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Elevator-First Router
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The Algorithm
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• A routing algorithm is deadlock-free 
if the channels in the network can   
be numbered such as every      
routing path uses strictly      
increasing (decreasing)             
channel numbers

Formal Proof of Deadlock-Freedom
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… an example …
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Performance …
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• Using spare TSV?
• Or by redirecting traffic 

into the network!
• Provisions for network 

reconfiguration
• Cost? Decision making?
• Dynamicity?

TSV failure tolerance

MUX DATA
9 : 8

DMUX DATA
8 : 9

TSV 8

TSV 7

TSV 6

TSV 5

TSV 4

TSV 3

TSV 2

TSV 1

TSV 0

Decode
Com Data

Decode
Com Data

DATA_OUT(7)

DATA_OUT(6)

DATA_OUT(5)

DATA_OUT(4)

DATA_OUT(3)

DATA_OUT(2)

DATA_OUT(1)

DATA_OUT(0)

DATA_IN(7)

DATA_IN (6)

DATA_IN (5)

DATA_IN(4)

DATA_IN(3)

DATA_IN(2)

DATA_IN(1)

DATA_IN(0)

COM_DATA [3:0] COM_DATA [3:0]
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• Elevator placement:
for a given traffic pattern/application domain, how many 
elevators should be used?

Vertically-Partially-Connected 3D-NoC 

Example for uniform random 
and localized traffic

Very technology dependent:
• TSV (and associated circuit) size
• TSV throughput
• Yield
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• Elevator placement:
for a given traffic pattern/application domain, where 
should the elevators be placed?

Vertically-Partially-Connected 3D-NoC 

Source: Xu et al

Placing 16 pillars on a 8x8 3D mesh

Example for a 8x8 3D mesh, 
uniform random traffic,
adaptive routing
Optimal minimizes hop-
count, …
What about deterministic 
routing ? Hot-spot or domain 
specific traffic ?
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• Elevator assignment:
for a given placement of the elevators, which elevator is 
to be assigned to any given node ?

Vertically-Partially-Connected 3D-NoC 

Not just a theoretical 
question!

Different random 
assignments for 50% 
elevators
(uniform random 
traffic used)
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• Zillions of NoC papers in 
the last decade, but only 
now companies start 
using them, …

• Many, many 3D works in 
last years, but 2.5D still 
the current roadmap

• 3D technological options 
are still quite open

Conclusion

3D Interconnections are key to future SoC design

Source: ITRS’11 interconnect analysis
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• QDI asynchronous circuits are robust
– Well suited to temperature changes, technology variability, 

and aging
– Design and test complexity is the issue

• Serialization limits the number of TSVs
– Without timing performance degradation
– With an acceptable area as compared to spared TSVs
– Power consumption is however high

Conclusion

Let’s get prepared for 3D NoCs using technology 
independent approaches !
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• Smart buffer usage enhances NoC behavior
– Static distribution of buffering capacities useful for memory 

on logic case
– What about optimizing sharing for dynamic behaviors?

• Vertically-Partially-Connected Topologies limit the 
number of TSVs
– Deadlock free algorithms can be derived
– Degrade performances
– Optimizations on several aspects may limit degradation

Conclusion

Let’s get prepared for 3D NoCs using technology 
independent approaches !
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Dankeschön, …
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