Turun yliopisto
University of Turku

CoMA: Towards a Configurable Many-core
Accelerator for FPGA-based Embedded Systems

Marco Ramirez, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila

Abstract

Hardware accelerators release the general purpose processor of a Q G
system from very compute-demanding tasks. This work presents a

Configurable Many-core Accelerator for FPGA-based systems, Peripheral 0 Peripheral 1

named CoMA. Its architecture combines an array of processing

cores interconnected by an NoC, with an I/O interface based on the Task A pseudo code Task B pseudo code

AXI protocol. CoMA provides the designer with a system void main{) £ void main() {

abstraction layer that facilitates task partitioning and peripheral Read_{0{10Addrd, buffer, buffsize); Receive(taskA,msg) ;

access. The implementation of the I/O interface was verified // Fomputations // Computations

through simulation, and synthesized for an FPGA. , endtaskB.msg); | Write _T0(ioAddrd, buffer, buffSize);

] Figure 3. Application example.
Main features

e CoMA explores the concept of utilizing an array of processing

cores for accelerating the execution of the most compute CoMA is designed to accelerate data-flow applications, which are
demanding tasks of an application. typically represented as task graphs. An application comprises a
set of tasks (nodes) that pass messages among them (edges). The
L . . . System Abstraction Layer defines a very simple application
specialized cores interconnected by a Network-on-Chip (Figure orogramming interface (APl) through which the tasks of an

1). application can exchange messages and get access to the 1/0O

e Connectivity with other system components is provided through devices. The developer only needs to create a file for each task

the industry-standard AXI bus thus assuring compatibility with and use the APl to implement all the communication functionality
third-party IP cores. of the task. Figure 3 shows an example of a small application,

while Figure 4 depicts the typical work flow.

System Abstraction Layer

e [ts architecture comprises an array of processing and 1/O-

e Message passing communication model that facilitates the
implementation of data-flow applications and maximizes task eXDroceed o ek aroohs

parallelism. ?3:/@ %\Eb
o A System Abstraction Layer that provides transparent inter-task l / l

communication and access to I/O devices (Figure 2). Cluster Architecture
. . Definition Source files == =|—|=] Source files
e External RAM and I/O peripherals are mapped onto a single e QQ@T core 0 l 1 l oo l 1 l core N
memory address space. =T
y P QQQQ Compiler Compiler
| e]qu]():] N
'FPGA | T 1] =5/ |=|F| Object files
GPP | ”_,, | Array of Processing Cores QTTQ}JQYJ - \ T /
- K O () () Tool set
E::: . ! K ,_?, _ 'L‘J# _‘_'_Li — _.-Jf"" Pl — — ol | =|=||=||I=| VHDL files
% ==t ' 1 0 _ M':';i:w Control Network |\ NoC ¢
PEEN /o | N ’f__,* |::}:r;:::: . | . | | - unit | | Unit [| Interface 1 Router |
Ethernet (j'—"—[f’ 'b Control |~ | S A S A N A 2N 2N FPGA Vendor
- N, [= : — g J b <L
Non-volatile | 4| N L "“*.{ .y - Transport Network ‘ ¢
| Memory T | N o]_I\— e A : J- _: | r | , :
AN ——)) — = FPGA Configuration file
N Write Unit | | Read Unit | | unit
N e e Figure 4. Typical work flow for a CoMA-based system.
Se (ax Buas M J L
\) AXI Bus - Slave Interface '
NoC-AXIl Interface
Figure 1. Architecture of a CoMA-based system. The NoC-AXI Interface is the key component of CoMA, therefore the
implementation efforts have been focused on it. Figure 5 shows the
Array of Processing Cores amount of resources utilized by the NAI on a Virtex-6 FPGA.
//\\\\
T —
GPP | Master || Slave 1 | Slave 2 | Slave N FUHCtlonal Unlt LUTS
Fir mg al[a]fa] || [a] [2] o] [a][m AXI-Master Write Unit 238
A e— A AR AR E L AXI-Master Read Unit | 261
(21558 (| Ve | | 5](E] 5] || & [HHH AXI-Slave Unit 66
| DS | ’ Mlcrn-.-l.{ernel | Micrn-lfernel | Micrf!{emel | | Mi:@@mel Control UIllt 59
- J0 10 i 10 L Local Memory Unit 457
| __ Communication Network | Network Interface 237
RV iyl . Glue Logic 185
Inpu;ﬂ:::utput ippli::f:ttinn T()tal 15503
ata epository] .
[Peripheral 1 | Data-flow Application 1 Figure 5. Amount of resources required by the NAI.
: Peripheral 2 ‘ :Data—ﬂnw Applicatinnz‘
< - . Contact Information
| Peripheral L ‘ .Data-ﬂuw Application M‘

Marco Ramirez

Figure 2. System Abstraction Layer. Email: maanri@utu.fi

