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Abstract

Hardware accelerators release the general purpose processor of a Q G
system from very compute-demanding tasks. This work presents a

Configurable Many-core Accelerator for FPGA-based systems, Peripheral 0 Peripheral 1

named CoMA. Its architecture combines an array of processing

cores interconnected by an NoC, with an I/O interface based on the Task A pseudo code Task B pseudo code

AXI protocol. CoMA provides the designer with a system void main{) £ void main() {

abstraction layer that facilitates task partitioning and peripheral Read_{0{10Addrd, buffer, buffsize); Receive(taskA,msg) ;

access. The implementation of the I/O interface was verified // Fomputations // Computations

through simulation, and synthesized for an FPGA. , endtaskB.msg); | Write _T0(ioAddrd, buffer, buffSize);

] Figure 3. Application example.
Main features

e CoMA explores the concept of utilizing an array of processing

cores for accelerating the execution of the most compute CoMA is designed to accelerate data-flow applications, which are
demanding tasks of an application. typically represented as task graphs. An application comprises a
set of tasks (nodes) that pass messages among them (edges). The
L . . . System Abstraction Layer defines a very simple application
specialized cores interconnected by a Network-on-Chip (Figure orogramming interface (APl) through which the tasks of an

1). application can exchange messages and get access to the 1/0O

e Connectivity with other system components is provided through devices. The developer only needs to create a file for each task

the industry-standard AXI bus thus assuring compatibility with and use the APl to implement all the communication functionality
third-party IP cores. of the task. Figure 3 shows an example of a small application,

while Figure 4 depicts the typical work flow.

System Abstraction Layer

e [ts architecture comprises an array of processing and 1/O-

e Message passing communication model that facilitates the
implementation of data-flow applications and maximizes task eXDroceed o ek aroohs

parallelism. ?3:/@ %\Eb
o A System Abstraction Layer that provides transparent inter-task l / l

communication and access to I/O devices (Figure 2). Cluster Architecture
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Figure 1. Architecture of a CoMA-based system. The NoC-AXI Interface is the key component of CoMA, therefore the
implementation efforts have been focused on it. Figure 5 shows the
Array of Processing Cores amount of resources utilized by the NAI on a Virtex-6 FPGA.
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