
International Workshop on Reconfigurable
Communication-centric Systems-on-Chip

Darmstadt, Germany, July 10 - 12

F. Cancare, C. Pilato, A. Cazzaniga, D. Sciuto, M. D. Santambrogio

Politecnico di Milano

D-RECS: A Complete Methodology to Implement Self
Dynamic Reconfigurable FPGA-Based Systems

•  Flexibility: many emerging products in communication, computing and consumer electronics demand that their functionality remains flexible also after the system has been manufactured.
–  Support of new standards, e.g. in media processing
–  Addition of new features

•  Design support for partial dynamic reconfiguration: Dynamic self reconfigurable embedded systems are gathering, day after day, an increasing interest from both the scientific and the industrial world.
At the same time, however, the need of a comprehensive and easy to use tool which can guide designers through the whole implementation process is becoming stronger.

•  Performance and runtime customization: reconfigurable computing is intended to fill the gap between hardware and software, achieving potentially much higher performance than software, while maintaining a higher
level of flexibility than hardware. Therefore it is possible to apply reconfigurable solutions to systems such as:
–  biomedical implants i.e., an artificial art control
–  telecommunications i.e., adaptive intelligent routers
–  Moreover: intelligent nanorobot control, artificial audio and vision, intelligent transducers at bio-electronic interfaces,…

Rationale

Innovative contributions
•  Aim of this work is to provide a fast brain to bit design flow whose goal is to simplify the dynamic reconfigurable

system development process by shifting the designer focus from the architecture point of view to the
application point of view. The novelties introduced by the proposed work with respect to the state of the art are
summarized hereby:
•  D-RECS, the definition of a complete methodology to implement Self Dynamic Reconfigurable FPGA-based systems. The

proposed approach shifts the designer focus from the architecture point of view to the application point of view,
providing a fast brain to bit design method- ology;

•  the definition of a reconfiguration unaware model-driven approach for modeling of SDR systems;
•  in the runtime decision of the most suitable implementa- tion (software or reconfigurable hardware) due to runtime

conditions;
•  Increase the reconfiguration performance via novel techniques, i.e. runtime reconfigurable cores relocation,

reconfigurable cores identification, reconfigurable cores reuse

Context definition
•  Reconfigurable Computing: the ability of altering an architecture (microarchitecture), once it has been deployed, to meet

at the best the execution needs
–  Reconfiguration Controller: the element that is responsible for the physical implementation of the reconfiguration

process i.e., in Xilinx FPGA the ICAP controller
–  Reconfiguration Manager: the element that is responsible
 for the management of a reconfiguration process i.e.,
 in ATMEL the AVR microcontroller, in Xilinx the PPC405

•  Reconfigurable Functional Unit: functionality that can be
 plugged and/or unplugged at runtime in an already working
 architecture

•  Reconfigurable Region: a portion of the device area used to
 implement a reconfigurable core

•  Relocation: the ability of moving a reconfigurable functional
 unit from a location to a new one

Figure 1 - Xilinx FPGA and configuration memory

Runtime reconfiguration management
•  Provide software support for dynamic partial reconfiguration on Systems-on-Chip running an

operating system
–  OS customization for specific architectures
–  RFU caching policies to improve the performance
–  Partial reconfiguration process management from the OS
–  Addition and removal of reconfigurable components
–  Automatic loading and unloading of specific drivers for the IP-Cores upon components configuration

and/or deconfiguration
–  Hardware-independent interface for software developers based on the GNU/Linux
–  Easier programming interface for specific drivers

Proposed solution
•  Definition and partial implementation of an entire design flow (Figure 2)
•  Two main contributions in this thesis can be found in:

–  Low-level design flow
•  Generation of the IP-Cores from these cores to be mapped onto the FPGAs
•  Generation of the communication infrastructure
•  Generation of reconfigurable bitstreams

–  Runtime reconfiguration management
•  Generation of the runtime reconfiguration manager for internal reconfiguration, if a

processor is available
–  These tasks apply to a specific reference architecture constituted by: a static part,

reconfigurable slots, communication infrastructure model

Figure 2 – Overall proposed flow

Physical Architecture

Reconfigurable HWGPPs

Users demanding applications

O
pe

ra
tin

g
Sy

st
em

Kernelspace
Self-Aware Support

App1 App2 App3 AppN

Userspace

Adaptive Libraries

Self-Reconfiguration
Support

Application
HDL files

Interfaces
Generation

ISE scripts

Architecture
Description

IP cores Basic
Architecture

EDK scripts

Interfaces HDL
files

Cores Generation

Netlists

UCF

(1) IP core Generation (2) System Architecture Generation

(3) Software Layer Generation

PlanAhead scriptsFloorplacing

Execution and reconfiguration managers

Final
Bitstreams

Constraint
identification Context Merging

(A) (B) (C)

!"!!!!!!#

!"$!!!!!#

%"!!!!!!#

%"$!!!!!#

&"!!!!!!#

&"$!!!!!#

'!# $!# (!#)!# *!# +!# %!!# &!!# ,!!# '!!# $!!# (!!#)!!# *!!# +!!# %!!!#

!
"#
$%
&
'
(
)*
+,

#
)-
./
)

0)12'$3.)

-./0#1#23#

-./0#1#453#

-./0#1#6453#

789:;#<=>;#6?@:#A#%"(!#/5B#

