Dynamically Reconfigurable FIR Filter
Architectures with Fast Reconfiguration

Martin Kumm, Konrad Moller and Peter Zipf

University of Kassel, Germany

FIR FILTER

Fundamental component in digital signal processing

Computationally complex due to numerous multiply/
accumulate operations

WHY
RECONFIGURATION?

Many applications require the change of coefficients...

...but only from time to time

= Possibility to reduce complexity

METHODS OF
RECONFIGURATION

1. Integrating multiplexers into the design

2. Partial reconfiguration (e.g., using ICAP)

3. Reconfigurable LUTs

MULTIPLEXER BASED
RECONFIGURATION

X
<<l1
<<6
<i@7—\+/; 0
= / == Multiplexers are integrated in
= add /shift networks
= - <F2 <<8 +\
" = . .
J © Extremly fast reconfiguration
= 0 L (single clock cycle)
—
== — @ Only a limited set of
= = .
é coetficients possible!

x-{815,621,831,105}
|[Faust et al. "10]

PARTIAL
RECONFIGURATION

Partial regions of the FPGA are
reconfigured via ICAP

© Least resources
© Arbitrary coetficients...

@ ... but synthesis needed for each
coefficient set

SMibek nst bt ® Slow reconfiguration (=us/ms)!

RECONFIGURABLE
LUTS

Changing the LUT content only

Routing has to be fixed

First academic tool available (TLUT flow, [Bruneel et al. "'11])
© Fast reconfiguration (a few clock cycles, =ns/ us)
© Arbitrary coefficients...
@ ... but (again) synthesis needed for each coefficient set

= Not, if a generic architecture is transformed to fixed routing

RECONFIGURABLE

LUTS

FPGA components to realize reconfigurable LUTs

Older Xilinx FPGAs (Virtex 1-4):
Shift-Register LUT (SRL16)

Newer Xilinx FPGAs

(Virtex 5/6, Spartan 6, 7-Series):
CFGLUTS5 (similar to SRLC32E but
with two output functions)

Other FPGA vendors:
Distributed RAM or block RAM

CFGLUTS

0
) O5
14

EEI 06

PCCLK CDO

METHODS OF
RECONFIGURATION

. Integrating multiplexers into the design
= Logic fixed, routing flexible

. Partial reconfiguration (e.g., using ICAP)
= Logic flexible, routing flexible

. Reconfigurable LUTs
= Logic flexible, routing fixed

LUT BASED FIR FILTER

Two well-known methods that employ LUTs in a fixed
structure, suitable for FIR filters:

1. Distributed Arithmetic [Crosisier et al. '73] [Zohar ’73] ...
... [Kumm et al. "13]

2. LUT based multipliers [Chapman "96] [Wiatr et al. "01]

The main question is:

"Which architecture performs best?”

DISTRIBUTED ARITHMETIC

Main idea is rearranging =
the underlying inner J=C=6= Cn Tn
product =,
N—1 B,—1
Resulting function = Cn, Z 2b:13n,b
(realized as LUT) is n=0 b=0
identical for each bit b Ba—it — =1
= = T T, b
= Less configuration memory — —
N’

DISTRIBUTED ARITHMETIC
OVERALL ARCHITECTURE

> __L0 ~ RLUT
—~Cr H (@)
E i
» 20,1 > \‘H
imex] Rt ||| § g
i f(@) ;
!
> 20,B, I— > ol
-_Zis Y RLUT | /5.
: : ~N
M -1 s S f(Zs,) \
Ny
= = 3 Output adder tree
Filter Select Reconf. He .
: Circuit [Reconfigurable LUTs
Pre-processing to -

exploit coefficient symmetry Reconfiguration circuit

DISTRIBUTED ARITHMETIC
MAPPING TO CFGLUTS5

CFGLUTS
<0,b 10 I
: : OS5 MR nL
(ML) #3,b 1T 4 fE2
CDI — A coi ’
CE > CE 06 I'H
CCLK D CDO |
= N
CFGLUTS N =
247b 10 o H 4 B}V (.Tb)
27,6 T i ?f @ Z
71&@ os
D cpo ||| i
CFGLUTS
; 10 I
: 05 3
ZM_]_,b 1 1 |4 » B%
D CDO

LUT MULTIPLIER
FIR FILTER

Basic Idea: Split a multiplication into smaller chunks which
fit into the FPGA LUT:

je=1 el
== b L b
Cr, * T _anan7b+2 anan,bJrLJr...
b= b=
B.x B, mult. . =0 , =0

B.x L mult. B.x L mult.

LUT MULTIPLIER
MAPPING TO CFGLUT5

CFGLUTS5S
xnao 10 s
: : 05 MR
| d ffgL
CCDEI / /i EEI 06
CCLK D CDO |
ll /
CFGLUTS5 \“)
x7?74 10 ' /V Ln * Cp
xﬁ,? i 4 i By | Q g
/| cDI ——
> CE 06 '
D cDo ||| 1 2
: : 05 Hh
Ln,KL-1 17 14 3 By
/
AL oy Y
coo || 4(K — 1)

LUT MULTIPLIER
OVERALL ARCHITECTURE

CONTROL ARCHITECTURE

CFGLUTS
—{ 10
) .
e < O5
S —> 14
p 1
PR > CDI
/ / - CE 06
Block RAM DCCLK CDO
addr
filt_sel CFGLUTS
| Controller
rec_en —1—>»{ 10
= 1 | =3 : 05
—_—] .
il
-ﬁL—> CDI
l »| CE 06
+—DCCLK CDO

RESOURCE COMPARISON

Distributed Arithmetic ; LUT Multiplier FIR
Bz + 1 LUTs with M inputs { M LUTs with B, inputs
CFGLUTs: CFGLUTs:

(By +1) [M/4]| |B:/2 + 1]

(Be +1)M(B./2 + 1)

M | By /4] |Bc/2 + 2]

1

Y
Y

1
4 ‘
M = | N/2]: No. of unique taps

B,/ B.: input/ coefficient bit width

RESOURCE COMPARISON

—_——— — e e

Distributed Arithmetic ; LUT Multiplier FIR

by + 1 LUTs with M inputs | M LUTs with B, inputs
CFGLUTS: | CFGLUTs:
(Be + 1) [M/4] [B./2+1] | M [B;/4] [B/2+ 2]

; 1
(B +1)M(B./24+1) | = ZB,JCM(BC/Q + 2)

= - 7

Surprisingly, CFGLUT requirements are very similar!

Y
Y

1
4

RESOURCE COMPARISON

Distributed Arithmetic ; LUT Multiplier FIR

—_— —— p——

Adders:
2M — 1+ M (Bx/éﬂ

Adders:
M + B, + (B, +1) [M/4] |

— So, LUT multiplier based FIR filters are better when...
OM — 1+ MB,/4< M + B, + (B, +1)M/4

3 .
— Wt ="l = 751,
4

...,i.e., the input word size B, is greater than
approximately half the number of coefficients M = | N/2]

RESULTS: 1ST EXPERIMENT

Synthesis experiment for Virtex 6
Nine benchmark filters with length N=6...151

Input word size B, € {8,16,24,32}

— Very fast reconfiguration times: 49...106 ns

— High clock frequencies: 472 MHz /494 MHz (DA /LUT mult.)

RESULTS: 1ST EXPERIMENT

LUT Multiplier improvement compared to DA:

S 40 . —

=

Q

g

2

2

Q.

5

8

Ty Ty | | | | | | | | |
6 10 13 20 28 41 61 119 151

Filter length NV

(a) Input word size B, = 8bit

< 40 s B e e Bt il

g 20 |- =

g

>

3 0

a.

g _20f g

8

o ——lT) | | | | | | | | |
6 10 13 20 28 41 61 119 151

Filter length N
(c) Input word size B, = 24 bit

Slice improvement [%]

Slice improvement [%]

40 \ \
20
0
—20
—40 | | | | | | | | |
6 10 13 20 28 41 61 119 151
Filter length NV
(b) Input word size B, = 16 bit
40

20

—20

| |
119 151

—40 | \ \
20 28 41 61

Filter length N
(d) Input word size B, = 32bit

As expected, the LUT multiplier architecture is best for low N

RESULTS: 1ST EXPERIMENT

LUT Multiplier improvement compared to DA:

S S
= =
Q Q
£ =
> >
2 2
g, e,
E E
S S
Ty Ty | | | | | | | | R T | | | | | | | | |
6§10 13 20 28 41 61 119 151 6 10 13 20 28 41 61 119 151
Filter length N Filter length N
put word size B, = 8bit (b) Input word size B, = 16 bit
g 40 g 40
£ 20 5 20
= =
2 2
S . S L
g, g,
g 20 g 20
8 8
o ——lT) | | | | | | e | | | | | | |
20 28 41 61 119 151 6 10 13 20 28 41 19 151
Filter length NV Filter lengt
(c) Input worddsize B, = 24 bit (d) Input word size B, # 32 bit

Choosing the right architecture can save up to 40% slices

RESULTS: 2ND EXPERIMENT

Comparison with partial reconfiguration via ICAP

Ten different filters with N=41 were highly optimized using
PMCM optimization RPAG [Kumm et al. "12]

Method S |bit] Slices fax [MHz] Trec [0S

RPAG with ICAP 7496 502...569 386.7...448.8 233280
Reconf. FIR DA 1920 1071 521.9 61.3
Reconf. FIR LUT 1108 487.8 65.6

)

Configuration memory is reduced by a factor ot
1/388 (DA) and 1/50 (LUT Mult.) ©

RESULTS: 2ND EXPERIMENT

Comparison with partial reconfiguration via ICAP

Ten different filters with N=41 were highly optimized using
PMCM optimization RPAG [Kumm et al. "12]

Method S |bit] Slices fax [MHz] Trec [0S
RPAG with ICAP 746496 386.7...448.8 233280
Reconf. FIR DA 1920 521.9 61.3
Recont. FIR LUT 14784 487.8 65.6

Slice requirements are roughtly doubled ®

RESULTS: 2ND EXPERIMENT

Comparison with partial reconfiguration via ICAP

Ten different filters with N=41 were highly optimized using
PMCM optimization RPAG [Kumm et al. "12]

Method S |bit] Slices fax [MHz] Trec [0S
RPAG with ICAP 746496 502...569 C386.7...448.8 D 233280
Reconf. FIR DA 1920 1071 \/"521.9 61.3
Reconf. FIR LUT 14784 1108 487.8 65.6

)

Perfomance is similar

RESULTS: 2ND EXPERIMENT

Comparison with partial reconfiguration via ICAP

Ten different filters with N=41 were highly optimized using
PMCM optimization RPAG [Kumm et al. "12]

Method S |bit] Slices fax [MHz] Trec [0S
RPAG with ICAP 746496 502...569 386.7...448.8

Reconf. FIR DA 1920 1071 521.9

Recont. FIR LUT 14784 1108 487.8

Reconfiguration time is drastically reduced
by a factor of 1/3556! ©

CONCLUSION

Two different reconfigurable FIR filter architectures for
arbitrary coefficient sets were analyzed

Both are implemented using reconfigurable LUTs (CFGLUTs)

The LUT multiplier architecture typically needs less slices
when input word size is greater than approx. half the number
of coefficients (and vice versa)

Both architectures offer reconfiguration times of about 3500
times faster than partial reconfiguration using ICAP

This is paid by twice the number of slice resources

RECOSOC CONCLUSION

If you have a reconfigurable
FPGA circuit which allows a fixed routing:

Use reconfigurable LUTS!

THANK YOU!

