

An FPGA Design And Implementation Framework Combined With Commercial VLSI CADs

ReCoSoC 2013

Qian Zhao Motoki Amagasaki Masahiro Iida Morihiro Kuga Toshinori Sueyoshi (Kumamoto University, Japan)

Background

- FPGA IP core development
 - Make SoC programmable
 - Requirements:
 - Synthesizable
 - Architecture exploration
 - Scalability
 - Other features (3D, dependability,etc)

Traditional academic flows are not applicable

- FPGA IP design framework is required
 - Efficiently evaluate & implement various arch.
 - Connect to commercial VLSI design flow

Goal of this research

- Goal: Develop an FPGA IP design framework
- Method: Develop novel routing tool EasyRouter
- New features:
 - Implement new architectures easily
 - C#(Mono) Platform (Linux/Windows)
 - C# script based Arch. definition
 - Arch. Exploration -> HDL & Bitstream generation
 - Same arch. exploration functions as traditional tools
 - Generate HDL & BitStream with simple templates
 - Performance analysis with commercial VLSI flow

architectures

• VPR is the main academic placement & routing tool

VPR: XML based Arch. definition Kumamoto

- Only support "Island Style" FPGA
- Parameters can be changed in XML based Arch. File

- Only small changes can be made for the supposed Arch.
- For unsupported Arch., need to modify the source code

VPR: Delay model

EasyRouter blocks

Script based Arch. definition

- Implement FPGA Arch. in a script file
 - Dynamic compiled during execution
 - Contains both Arch. Implement codes and parameters
 - Any architecture can be implemented in low cost

Verilog & BitStream generation Kumar

VerilogHDL

- Logic block
 - Prepared in template
- Routing
 - Generated according to Channel width / CB,SB topology
- **Chip**: Top level module according to array size

BitStream

- **Routing & Local connection block**
 - Generated according to routed info.
- Logic block
 - Technology mapping results
- CB: Connection Block SB: Switch Box

University

FPGA design flow based on EasyRouter

Fast evaluation with EasyRouter Kumamoto

- The fast evaluation with EasyRouter can be used when
 - VLSI analysis is too slow (big chip)
 - No available VLSI flow(3D-FPGA)

Evaluation : EasyRouter

- Device structure
 - Island style FPGA

Item	value
Logic cluster	4-LUT×4
# of LB inputs	10
SB	Wilton(Fs=3)
СВ	Fc_in=0.5, Fc_out=1.0
Channel	Single lines

- MCNC Benchmarks
- Evaluation items

- Minimum channel width for routability evaluation
- Execution time for tool efficiency evaluation

Minimum channel width (Routability)amoto

Execution time (CPU time)

- EasyRouter is 8 times slower than VPR on average
- Big circuits are about 5 times slower

Evaluation for proposed design flow

- Process: e-Shuttle 65nm
- Device parameters

Item	value
Array size	15×15
Logic cluster	4-LUT×4
# of LB inputs	10
SB	Wilton(Fs=3)
СВ	Fc_in=0.5, Fc_out=1.0
IOB	Fc=1.0
# of routing tracks(single line)	50/channel

- MCNC Benchmarks
- Evaluation items

- Critical path delay on average (10 placement seeds)

Device architecture for evaluation

Homogeneous FPGA

Tile structure

Critical path delay results

- Delay from VPR is about 10x worse than STA results
- Delay from EasyRouter is about 1.5x worse then STA results

EasyRouter

- Simple: New arch. can be implemented in low cost
- High accuracy: Link academic FPGA tools with commercial VLSI CADs

Other works with the proposed flow

- 3D-FPGA(VLSI-SoC2013)
 - "Three-Dimensional Stacking FPGA Architecture Using Face-to-Face Integration"
- Hierarchy routing FPGA(FPL2013)
 - "Defect-Robust FPGA Architectures For Intellectual Property Cores In System LSI"

Thank you for your attention.

VPR(MIN-MAX-AVG. value from 10 seeds results)

Kumam

University

EasyRouter(MIN-MAX-AVG. value from 10 seeds results)

 Change range of delay results of STA results are smaller than VPR when placement seed changes

20