The HeartBeat model

A platform abstraction enabling fast prototyping of real-time applications on NoC-based MPSoC on FPGA

Francesco Robino, Johnny Öberg

KTH Royal Institute of Technology

ReCoSoC 2013

F. Robino (KTH)

The HeartBeat model

11-07-2013 1 / 16

Motivation

- What is the problem?
- Benefits solving the problem
- Our solution
 - Modeling techniques
 - Our idea
 - From idea to implementation
 - Experimental evidences and examples
- Conclusion

Motivation: Embedded systems modeling

- Embedded systems are getting very complex
- We want to abstract, reduce details in the system model

• We want System Design Automation to automatically add details

- it implements the embedded application on multi-processor platforms
- the automated synthesis of the whole system must be fast!

Motivation: Embedded system architecture

- Embedded *architectures* are getting very complex
- details are increasing!

NoC-based MPSoC

The problem

- Huge abstraction gap
- Huge design space
 - Platform allocation
 - Processes binding
 - Processes schedule
- Platform:

- complex to program
- complex to generate

Filling the gap through design automation: benefits

• Reduces time to market, reduces errors, reduces complexity...

F. Robino (KTH)

The HeartBeat model

11-07-2013 5 / 16

The theory of models of computation (MoCs)

A MoC defines communication and execution rules between nodes executing the operations.

- The MoC rules can be described through formal notation (math)
- Embedded application modeled as a set of communicating processes

The synchronous MoC

- We use the *synchronous MoC*
- Used in synchronous languages (i.e. Lustre) to guarantee real-time
- Combinatorial application in the synchronous MoC:

Value
$$\rightarrow 3$$
, 6 5 8
Event $\rightarrow 1$, p_{+1} p_{+

• Application with memory in the synchronous MoC:

From synchronous MoC to NoC-based MPSoC

F. Robino (KTH)

11-07-2013 8 / 16

From synchronous MoC to NoC-based MPSoC

- We define an intermediate layer, the HeartBeat model:
 - fills the abstraction gap adding details about timing and architecture
 - enables the MPSoC to expose the same semantics of the MoC
 - critical path (RTL, sea of gates) \Rightarrow HB period (MoC, sea of cores)

The HeartBeat model (for this simple example)

$$t_{HB} \geq \max_{m=0}^{M} (t_{\epsilon_i} + t_{c_i})$$

F. Robino (KTH)

11-07-2013 9 / 16

A HW/SW co-design flow based on the HeartBeat model

F. Robino (KTH)

The HeartBeat model

11-07-2013 10 / 16

SW synthesis technique

• Application view:

synthesis of software to access NoC API and synchronize on HB tick

F. Robino (KTH)

Image: Image:

11-07-2013 11 / 16

★ ∃ >

HW synthesis technique

• Platform view:

synthesis of NoC-based MPSoC with HeartBeat support

- A HW timer generates HB ticks
- The HB period (timer period) can be defined by the user, following the Heartbeat model

Case study

- A neural network, 4 layers, each layer 100 neurons
- Each layer on a separate PE (4 layers, 4 PEs, 2×2 NoC)
- ullet Generation of files for prototype synthesis on FPGA <1 second

• Optimize the application: find the minimal HB period of the system

The HeartBeat model (for this simple example)

$$t_{HB} \geq \max_{m=0}^{M} (t_{\epsilon_i} + t_{c_i})$$

- t_{ϵ_i} has been found through extensive emulations. Its value is 5,97 ms
- t_{c_i} can be found following models proposed in referenced papers
- The HeartBeat period is totally dominated by t_{ei}, it is an order of magnitude larger than t_{ci}
- Concluding the maximal HB frequency of the system is $\frac{1}{5.97} \simeq 150$ Hz

Results and related work

Design flow	MAMPS	Our work	
Target platform	2 processors	4 processors	
Platform interconnection	2×1 NoC	2×2 NoC	
Creating system model	manual(SDF)	manual(SY)	
Creating application model	manual	semiautomatic	
Generating architecture model	1 second	${\sim}100$ millisec	
Mapping the design	1 minute	manual	
Generate Xilinx/Altera project	16 seconds	\sim 500 millisec	

Table: SDA flows steps rapidity

	COMPSOC	Open-Scale	MAMPS	Our work
MoC entry	HSDF	KPN	SDF	Sync
NoC arch.	Mesh	Mesh	Mesh	Mesh
NoC dim.	2D	2D	2D	2D,3D
API generation	Y	N	N	Y
Prototype	Y	Y	Y	Y
OS avail.	Y	Y	N	N

Table: SDA flows properties comparison

Conclusion

- The *HeartBeat model* is an intermediate platform model bridging the abstraction gap between the synchronous MoC and a NoC-based MPSoC platform
- The *HeartBeat model* enables a SDA flow to synthesize an embedded application onto a NoC-based MPSoC on FPGA, provided that the timing constraints of the HeartBeat model are met
- The design flow reduces the complexity of designing embedded systems for NoC-based MPSoCs through a GUI
- The automated flow speeds up the design process of embedded systems.

More info and tutorials

https://forsyde.ict.kth.se/noc_generator/