RWTHAACHEN
UNIVERSITY

|
l
==

CoEx: Novel Profiling-Based
Algorithm/Architecture Co-Exploration
for ASIP Design

Juan Eusse, Christopher Williams, Rainer Leupers
Chair for Software for Systems on Silicon (SSS)

ReCoSoC 2013, Darmstadt July 10t, 2013

ffice

Institute for Communication Technologies and Embedded Systems

Why do we need ASIP oriented profiling?

9 Multi-Grained application profiling

e CoEx implementation
@ Evaluation: Execution Overhead

6 Case Study: Planar-Marker detection for AR

6 Conclusions and future work

-
o RWTHAACHEN
(|CC © Juan Eusse — 2013 , ReCoSoC 2013 I e

1. Why do we need ASIP oriented profiling? (1)

®" |n aworld of changing standards, how to keep the right amount of
flexibility while being efficient?

General
Purpose
Processors

Log FLEXIBILITY

Digital
Signal
Processors

HW Design

—

ICs

Physically
Optimized
ICs

Z

] @)

Field 5
Programmable L o
Devices H o
- o
Application » %
Specific T

=

o

ol

(@)

o

-l

<
<«

Log PERFORMANCE >

10%...10% >
Source: T.Noll, RWTH Aachen

A7
[|CG © uanEusse - 2013

RWTHAACHEN
3 ReCoSoC 2013 UNWE?&QEW

1. Why do we need ASIP oriented profiling? (ll)

= Architecture Description Languages (e.g. LISA) -based tools can:
" Generate the SW environment (assembler, linker, simulator,
compiler)
" Generate HDL descriptions

= Profiling has remained the entry point to all ADL-based
methodologies

Customize /
Implement

S Explore the Architecture
N c Algorithm
. S 2
Design L = Generate SW
Constraints Q&= 5 Environment
EcTc ~
c o =
T D
S
= . Modify the
< Simulate / L
Synthesize Application
Application
Specification
A (C/C++)
1 ICGE © suanEusse - 2013 4 ReCoSoC 2013 “‘"ﬂ{,‘ﬁ%‘%

A
(

1. Why do we need ASIP oriented profiling? (llI)

" |nput specification comes as “high-level” C/C++ code
" Usually directly from the algorithm designer

= Profiling used only to detect application “hotspots”
" SLP tools are intended for GP program analysis
" Emulation-Based is more accurate but cannot be reused

" |SS/HW based requires the existence of a target processor
architecture

Speed/Availability/Granularity

Source Level Emulation-Based ISS/HW-Based
Profiling (SLP) profiling Profiling

Accuracy/HW-dependency

-
o RWTHAACHEN
|CC © Juan Eusse — 2013 5 ReCoSoC 2013 I e

Presenter
Presentation Notes
* Application hotspots are usually concentrated among a few functions, but modifications inside those functions may affect the entire application functionality.

* The algorithm designer is mainly concerned by the correctness of the algorithm itself, regardless of the efficiency of the execution when implemented in a given platform. It is a task of the ASIP designer to understand the algorithm and to devise a processor architecture that can execute the algorithm efficiently, while maintaining the algorithmic correctness but satisfying specification constraints.

3. Multi-Grained application profiling (1)

ReCoSoC 2013 IRWTH

3. Multi-Grained application profiling (Il)

= Available profiling configurations related to the ASIP design stage

Algorithmic Exploration

1. Hotspot detection

2. Common sub-case
optimizations

3. Memory usage
optimization

4. Numerical
transformations

Callgraph generation

Function/BasicBlock

e : 1. Instruction set design
statistics/tracing

2. Data path construction

Memory access .
and sizing

statistics/tracing

Variables value range 3. Custom memory
collection/tracing architectures/hierarchies

Stack/Heap size

: : 4. Specialized HW
collection/tracing

(branch predictors, ZOL,

. AGUSs)
Dynamic memory

(de)allocation
recording/tracing

Profiling configuration

A7
[|CG © uanEusse - 2013

RWTHAACHEN
y ReCoSoC 2013 UNIVERSITY

4. CoEx implementation (I)

— Clang (C/C++) i i
— E g e = Standalone Multi-Grained
L SLP based on LLVM code
Instrumentation

Application

Source (C) LLVM Linker
+
LT-Optimizer LLVM IR

(mod.be) (= = Granularity of the profiling
scenario is configured by
Profiler Multi-grained the designer

Configuration Code Instrumenter

Instr IR .
(instr.be) = Generated profiling
—|—> Target Backend Information is independent

o of the target architecture
Profiling Library —
—_— | T
Ef?iiff > Profiling Statistics
D1LODO10L
mStg‘f:;f:tEd Native Execution —
Trace Files
[|CGE o suanEusse-2013 g ReCoSoC 2013 RWTHEACKEN

Clang (C/C++)

Front-end

Application

Source (C) .
LLVM Linker

+
LT-Optimizer

Multi-grained

| —
Profiler Code Instrumenter

Configuration

@—h

Profiling Library v

4. CoEx implementation (lI)

void merge_lines(char cond) {
float *sPtr = (float*)malloc(2*sizeof(float));

if(cond) sPtr[index] = val; else sPtr[index+1] = val;

free(sPtr);
! +

entrv:
entry:

I <?xml ve (311 void (i8*,...)* @_PROF_LSInitLocalInfo(...) ?>
2 <profCon gcall = call i8* @_ PROF_Malloc(i64 8)
3 <globa. tohool = icmp ne i8 %1, ©
4 <Erac pr j1 %tobool, label %if.then, label %if.else >e="true"
5 "true" />
6 <fnBbSt enabled="true"/
7 <traceOutpit file e="trace.txt

if.then:
call void @__PROF_FNProcessFunctionEntry(...)
%calll = call float @fni()

call void @__PROF_FNProcessFunctionExit(...)
store float %calll, float* %arrayidx

br label %if.end
14 ..
15 </function>

DI010101 16 </functionConfig> if.else:
Eﬁﬁ % 17 </prof i call void @ _PROF_Mem(...)
91010101 =3 \'d store float %5, float* %arrayidx2
01600101 if.end: br label %if.end
call void @free(i8* %
nstrumented . : ret %12 e LLVM IR
Binary Native Execution it end:
call void @__PROF_Free(i8* %9) |nStrumented LLVM |R
ret %12
A7~
[I‘ ‘— © Juan Eusse — 2013 9 ReCoSoC 2013 R\'J'IH

4. CoEx implementation (ll1)

SSO0 o035
1 [
[el=ialealalele)
| =A== L =
RO HQZHE
SO PORG
L=t l " = [
PHHEEE QPP G

e
|r'IStI"L_JmEI"It'Ed é flfn-':ofilerResultsb-
sinary Native Execution 3 <= Imerge_lines|6]cond|8
— . <]merge _lines|1l]cond]|8 e
= Static File: 6 I ge_t1 |11] | g
. ... |merge_lines|16|cond]9
" Language dependent | ¢ % Imerge_lines|21]|cond]|2 »
Information Il 3:0 |merge_lines|26]cond|7
. . Z 4:s =
= Dynamic File: . s.n Imerge_lines|31]cond]|5
s Applicati . I 35“5 [merge _lines|36|cond|7
pplication execution I 4.c. Imerge_lines|41|cond|2

extracted information
® General Trace

® Functions, basic
blocks, memory

= Value Trace:
® |ndividual value traces

v < |merge_lines|46]cond|8
2 2 |merge_lines|51]|cond|6
23 <MaxStackSize> 26 <fMaxStacksSize>

24 </profilerResults> Va'ue trace flle
Dynamic output file

Size and type of output depends on
the profiling scenario configuration

— o o e e M EE E M M M e e M M M e M M e e R M M Em
—_
~

A7
[|CG © uanEusse - 2013 o ReCoSoC 2013 RWTH

4. CoEx implementation (1V)

= Profiling results visualization:
" |ntuitive navigation through the profiling results
" Linking/highlighting of the application source code

ResultView
File View
IL &
-
Functions = Operators Types Misc ResultView (=
Select Result _:“ b
+-*for.end” |]
, i 4

- "if s 4

+“far.cond” =

L “farbody" Funct|uns| Operators Types Misc

+-*forend 71 ur [36.49]

L forinc 5" SEIECt R-esult = rrorptr [7.69]

o . =-Function details delta [7.68]

& *for.end?7 b o et L i 15.77]

Memory Accesses | s-quantize_fs_dither input_ptr [5.77]

T compress_byte +-Operators by Type 1 15.77]
s-yce_rgh_convert =-Basic Blocks ldir [5.76]
+ipeg_idct_islow i E.'for.body31" E'”fi?,[?;;fé]

- . v X
+h2v2_fancy_upsample Branch Information bglowen [3.84]
+-put_pixel rows L t.Operators bnexterr [3.84]
wdecode_meil iz i a"forine” idirnc [1.82]

ol T N H e o lormap_ci [1.92]
680 1 pixcode = GETISAMPLE{ colorindex_cifcur]}; i #-"for.cond28" o P
* = e : i 3 rcolorindex_ci [1.92]

$ CURBUL e o= LOSMIRLE) pincede,)) | difend” range_limit [1.92]

683 s Nobe: we e go & ¢ +-"for.body5" i [0.03]

€84 v minel ‘code. - becauss 1ha. rolormes 15 SFthosons | difthen® ther [0.07]

BES GETJSAMPLE(colormap_ci[pixcode]) . | @-"for.cond2”

:g puTE ¢ racti gated to ; i vantry" =

g: * next- il r ws Left by 1 654 errorptr = cquantize->fserrors[ci]; /* == entry be [~]
655

s Bmetert s S 656 colorindex ci = cquantize->colorindex[ci];

692 1| cir +a dalta = iy T _ 657 colormap_ci cquantize->sv_colormap[cil;

693 errorptr[] = (FSERAOR) (bpreverr + cur): 658 t or values: no error propagated to from left */

634 cur += delta; /% form error * 5 659

B9S bpreve belowerr + cur; 660 /* and no error propagated to row below yet */

696 belowerr = bnexterr; 661 belowerr = bpreverr = 0;

697 cur = delta; = for “ 7 b

P T Pofnt £ —ype F i ; ropagated 663 W = width; col > @; col--) {

699 " E: ' L 4 t 664 - holds the propagatea

700 e : ad over. be a srefore reac 665 .)

701 666

702 & input_ptr += dirnc; Yefvial put ptr to nex N - _

it B 667 expressed * 16) to an
| output_ptr = dir; aNCe Ut .
-rgi | ,.,,E,.T?r._ A ik i : : 668 infinity, so adding 8
1 3 669 - jn of the

srefjquantl.c 670 points array ent
671
672
673
674 * ax.
675 * of the range_
676 */
677 cur += GETJSAMPLE(*input_ptr); i

EL) — GETICAMMDI EL 1 1 1y |

[m B
srcfjquantl.c

-~
: o RWTHAACHEN
(|CC © Juan Eusse — 2013 1 ReCoSoC 2013 I e

4. CoEx implementation (1V)

= Pre-architectural performance estimation

Abstract Processor Model (APM " :
LLVM IR () Profiling Information
Instruction Set Functional Units Library calls cost
(FUs) calibration Exec Ct:-
_ _ Branch Info
\\ Instruction Latencies True: -
S FU characteristics % False:-
N ’
N IR - Instruction mappin s
S > PP g, 7 Exec Ct: 25
- Branch Info
entry - - l ADD LD ADD Unconditional
- 'l p nop || muL
-~ I | nop || nop || NoP _
I | nop || ADD || NoP PR 'E;‘;‘r?] ccrf] :fzoz
| | MuL ORI -,
for.cond LLVM _IR || ca 7 True: 80%
Instructions | | NoP -, False:20%
~- | noP < L7 |
~ o ’ /7 Exec Ct: -
~ o | . -, / Branch Info
~< | List Scheduler _- L7 True:-
. P 7 False:-
4 Exec Ct: -
Exec.Count Branch Info
St Branch Penalties True: -
False:-

Performance
Estimate

-~
[ICGC -

RWTHAACHEN
UNIVERSITY

5. Evaluation: Execution Overhead ()

® |nstrumentation Overhead:

" Generated profiling scenarios for AES, JPEG, ADPCM,
FFT(IFFT), Blowfish, Susan from DSPStone and EEMBC.

" Two non-optimized applications considered:

" Audio filter application

" Planar marker detection for augmented reality — case study
" Profiling scenarios tuned to match existing SLP analyses
" Native execution time is the baseline for overhead calculations

- 100000] ﬁrofilinéfSimullation tlechnollogy I
g 10000 B COEX 1 | Overhead compared with gprof,
§§ 1000 f e . gcov, callgrind (function call),
S Lol leak-check (dynamic memory),
=9 S :
g2 | massif (stack/heap), dhat
w @ L .
X o (memory accesses), bbv (basic
0~ L .
g 1r ﬂ ﬂ block tracing)
0.1l —
Qoﬁof 9000 6//# %’F‘c
ZU N
*
‘_SS -CA has no equivalent configuration within CoEx
[|CG © uanEusse - 2013 13 ReCoSoC 2013 RWIHAACHEN

6. Case Study: Planar-Marker detection for AR (I)

= Customization of the PD_RISC processor for an AR application
= Detect black-and-white 2-Dimensional markers in an image
" |nput specification consists on ~2900 lines of C code

" Function pointers, recursion, SP floating-point, dynamic memory
management heavily used

= Algorithm steps:

1. Divide the image into 40x40px regions

2. Detect pixels with strong magnitude

changes

3. Detect which belong to straight lines
4. Merge compatible lines (super-lines)
5. Extend super lines until corners
6
7
8

. Keep lines that have corners
. Build line chains
. Detect markers

A7~
o RWTHAACHEN
(|CC © Juan Eusse — 2013 " ReC0S0C 2013 IRACLEN

6. Case Study: Planar-Marker detection for AR (lI)

= Profiling Scenario 1: Function/Basic Block/Timing analysis (no trace)
" Light-weight profiling (low execution overhead)

" Steps (3) and (4) of the algorithm consume 29% and 40% total
execution time

Memory Load- Intege Floating Function Execution
Address Store Point Count
Ops.

Line check 25 693600
2x1 Vector 12 50 2 10 734044
Normalization

2x1 Dot 4 10 0 3 2264043
Product

Square Root 0 17 2 5 1073440
2x1 Vector 4 9 0 3 1099245
Length

® 10% in calls to malloc/free

[|CGE o suanEusse-2013 15 ReCoSoC 2013 WM

6. Case Study: Planar-Marker detection for AR (lll)

= Profiling Scenario 2: Function/Basic Block profiling (stack/heap trace)

" Observed initial/final frame memory (de)allocation
" Closer look revealed repetitive (de)allocation

® Trace examination enabled:
= Static memory and memory pool sizing

930235
930220
930205
930190
1930174 &
g
1930159 2
©

N
930144 @

Heap

930129

1930114

ML
Stack
Heap

Trace Samples

—-930098

930083

930068

‘{I(CG © Juan Eusse — 2013

" 13% of overall
execution
speedup

= No architectural
customization

ReCoSoC 2013

RWTHAACHEN
UNIVERSITY

6. Case Study: Planar-Marker detection for AR (1V)

= Profiling Scenario 3: Hotspot input/output value trace

" Traced hotspots from profiling scenario 1

" Assumed a 32bit fixed point word
" Explored MSE for different quantization schemes (using Matlab)

8

10°f

Floating—Point

10

Ocurrence Frequency

10;1\\.%

4

10

Q21.10 Fixed—Point |]

Trace Samples Fractional Part

= Replaced floats by
Q21.10 fixed point

m 27% further speedup

® Still no architectural
customization

A7
{ ICG © Juan Eusse — 2013

17

RWTHAACHEN
ReCoSoC 2013 UNIVERSITY

6. Case Study: Planar-Marker detection for AR (1V)

= Profiling Scenario 4. Function/Basic Block/Memory Access profiling

(Fn/BB traces enabled)

" Exploration of the generated information through the GUI

" Architecture customization only done using fusion-type instructions:
" Fixed point support for the ALU
= SIMD addition, substraction and multiplication
" Dot product for 2x1 vectors

" Reciprocal square root approximation

B+

SW
fixed-point

Speedup
[Relative to input specification)

Static
memory

Invarss
Seyuare root

fixad-paint
SIMD
ooT

6x combined speedup
achieved in only two
days of design time

Algorithmic
Exploration

Architectural
Exploration

A7
[ICG © Juan Eusse — 2013

18

RWTHAACHEN
ReCoSoC 2013 UNIVERSITY

4. Case Study: Planar-Marker detection for AR (V)

= Pre-architectural performance estimation of case study
results

" Estimation performed after each successive
algorithm/architecture iteration

" Accuracy metric based on CA simulation results from ISS

Application/Architecture ISS-CA Estimated Error ISS Time | Estimation | Estimation/
Revision Cycles Cycles (%) (sec) Time (sec) | Simulation
Ratio

Input specification + 3705186373 2970991784 -19.82 4147 1.23 3371
PD RISC (Base)

Static Memory + 3403357531 2688236170 -21.01 3762 1.21 3109
PD RISC (Base)
Fixed Point + 2658942738 2238013034 -15.83 2991 1.22 2471
PD RISC (Base)
Fixed Point + 1670310514 1365812907 -18.23 2948 1.25 2358

PD RISC (Fixed +Vector)

Fixed Point + 622717072 514052942 -17.45 2991 1.24 2412
PD RISC (Square
Reciprocal approx.)

fice ;

/. Conclusions and future work (1)

= We propose Multi-Grained Profiling, which combines granularity
levels according to the ASIP design stage to ease algorithmic
exploration, application optimization and architecture exploration.

®= We have implemented an MGP-enabled profiling tool (CoEX) to test
the validity of the approach.

= Although the execution overhead regarding native execution is
considerable, the amount of generated information and the
possibility of re-using it for other analyses (i.e. performance
estimation) compensates such overhead.

= A GUI has been developed to help the designer in the analysis of
the generated profiling information.

A7
(|CG © Juan Eusse — 2013 20 ReCoSoC 2013 NU“NIII\%\%%'\\(I

/. Conclusions and future work (Il)

Pre-architectural performance estimation of early architectural
decisions has been also explored, obtaining fairly accurate results
without the need for application simulation on an ISS.

In the case study we have shown that by using CoEx, a designer
can grasp the inner workings of an application specification ina
time efficient manner.

Furthermore, we were able to customize the PD_RISC processor in
just two days design time to detect planar markers in 2D images,
obtaining 6x performance gains.

Future work will explore more in depth performance estimation
based on abstract processor models, in order to get more accurate
results.

A7
(|CG © Juan Eusse — 2013 1 ReCoSoC 2013 NU“NIII\%\EEE'\\(I

Questions?

Thank you!

~
(ICE 22 RN e

	CoEx: Novel Profiling-Based Algorithm/Architecture Co-Exploration for ASIP Design
	OUTLINE
	1. Why do we need ASIP oriented profiling? (I)
	1. Why do we need ASIP oriented profiling? (II)
	1. Why do we need ASIP oriented profiling? (III)
	3. Multi-Grained application profiling (I)
	3. Multi-Grained application profiling (II)
	4. CoEx implementation (I)
	4. CoEx implementation (II)
	4. CoEx implementation (III)
	4. CoEx implementation (IV)
	4. CoEx implementation (IV)
	5. Evaluation: Execution Overhead (I)
	6. Case Study: Planar-Marker detection for AR (I)
	6. Case Study: Planar-Marker detection for AR (II)
	6. Case Study: Planar-Marker detection for AR (III)
	6. Case Study: Planar-Marker detection for AR (IV)
	6. Case Study: Planar-Marker detection for AR (IV)
	4. Case Study: Planar-Marker detection for AR (V)
	7. Conclusions and future work (I)
	7. Conclusions and future work (II)
	Slide Number 22

